COMPLETELY SUPRA N-CONTINUOUS FUNCTION

Vidyarani, L*. and M. Vigneshwaran

Department of Mathematics, Kongunadu Arts and Science College (Autonomous), Coimbatore. *E.mail: vidyarani16@gmail.com

ABSTRACT

In this paper, we introduce a new concept called completely supra N-continuous function and investigated its relationship with other functions.

Keywords: Completely supra N-continuous function.

1. INTRODUCTION

The notion of supra topological spaces, scontinuous functions and s^* -continuous functions was introduced (Mashhour *et al*, 1983). Supra Nclosed set was introduced and supra N-continuity and supra N-irresoluteness investigated (Vidyarani and Vigneshwaran, 2013a).

In this paper, we introduce the concept of completely supra N-continuous function and investigated its relationship with other functions in supra topological space.

2. PRELIMINARIES

2.1. Definition

A subfamily μ of X is said to be supra topology on X if

i)
$$X, \phi \in \mu$$

ii) If $A_i \in \mu \ \forall i \in j$ then $\cup A_i \in \mu$. (X,µ) is called supra topological space.

The element of μ are called supra open sets in (X, μ) and the complement of supra open set is called supra closed sets and it is denoted by μ^c .

2.2. Definition

The supra closure of a set A is denoted by cl^{μ} (A), and is defined as supra $cl(A) = \cap \{B : B \text{ is supra closed and } A \subseteq B\}.$

The supra interior of a set A is denoted by $int^{\mu}(A)$, and is defined as supra $int(A) = \bigcup \{B : B \text{ is supra open and } A \supseteq B \}$.

2.3. Definition

Let (X, τ) be a topological space and μ be a supra topology on X. We call μ a supra topology

associated with τ , if $\tau \subseteq \mu$.

2.4. Definition

Let (X, $\boldsymbol{\mu})$ be a supra topological space. A set A of X is called

- (i) supra semi- open set (Levine, 1991), if A ⊆ cl^µ(int^µ(A)).
- (ii) supra α -open set (Devi *et al.*, 2008), if A ⊆ int^µ(cl^µ (int^µ(A))).
- (iii) supra Ω closed set (Noiri and Sayed, 2005), if $scl^{\mu}(A) \subseteq int^{\mu}$ (U), whenever $A \subseteq U$, U is supra open set.
- (iv) supra N-closed set (Vidyarani and Vigneshwaran, 2013a), if Ωcl^{μ} (A) \subseteq U, whenever A \subseteq U, U is supra α open set.

The complement of above supra closed set is supra open and vice versa.

2.5. Definition

A map $f:(X, \tau) \rightarrow (Y, \sigma)$ is said to be

- (i) supra N-continuous (Vidyarani and Vigneshwaran, 2013b), if $f^{-1}(V)$ is supra N-closed in (X, τ) for every supra closed set V of (Y, σ).
- (ii) Supra N-irresolute (Vidyarani and Vigneshwaran, 2013a), if $f^{-1}(V)$ is supra N-closed in (X, τ) for every supra N closed set V of (Y, σ).
- (iii) strongly supra N-continuous (Vidyarani and Vigneshwaran, 2013b), if $f^{-1}(V)$ is supra closed in (X, τ) for every supra N-closed set V of (Y, σ) .

3. COMPLETELY SUPRA N-CONTINUOUS FUNCTIONS

3.1. Definition

A map $f:(X, \tau) \rightarrow (Y, \sigma)$ is called completely supra continuous function, if $f^{-1}(V)$ is supra Regular closed in (X, τ) for every supra closed set V of (Y, σ) .

3.2. Definition

A map $f:(X, \tau) \rightarrow (Y, \sigma)$ is called completely supra N-continuous function, if $f^{-1}(V)$ is supra Regular closed in (X, τ) for every supra N - closed set V of (Y, σ) .

3.3. Theorem

Every completely supra N-continuous function is completely supra continuous function.

Proof Let $f:(X, \tau) \rightarrow (Y, \sigma)$ be a completely supra N-continuous function. Let V be supra closed set in (Y, σ) . Then V is supra N-closed set in (Y, σ) , since every supra closed set is supra N-closed set. Since f is completely supra N-continuous function, then f ⁻¹(V) is supra regular closed in (X, τ) . Therefore f is completely supra continuous function.

The converse of the above theorem need not be true. It is shown by the following example.

3.4. Example

Let X=Y={a, b, c} and $\tau = \{X, \varphi, \{a\}, \{b, c\}\}, \sigma = \{Y, \varphi, \{a\}\}$. Let f:(X, τ) \rightarrow (Y, σ) be the function defined by f(a)=a, f(b)=c, f(c)=b. Here f is completely supra continuous but not completely supra N-continuous, since V={a,c} is s u p r a N - closed in (Y, σ) but f ⁻¹({a,c}) = {a,b} is not supra regular closed set in (X, τ).

3.5. Theorem

Every compl etely supra N-continuous function is supra N-continuous function.

Proof Let $f:(X, \tau) \rightarrow (Y, \sigma)$ be a completely supra N-continuous function. Let V be supra closed set in (Y, σ) . Then V is supra N-closed set in (Y, σ) , since every supra closed set is supra N-closed set. Since f is completely supra N-continuous function, then f⁻¹(V) is supra regular closed in (X, τ) . Since every supra closed set is supra closed set and every supra closed set is supra N-closed set, then f⁻¹(V) is supra N-closed in (X, τ) . Therefore f is supra N-continuous function.

The converse of the above theorem need not be true. It is shown by the following example.

3.6. Example

Let X=Y={a, b, c} and $\tau = \{X, \varphi, \{a\}, \{b, c\}\}, \sigma = \{Y, \varphi, \{a\}\}$. Let f:(X, τ) \rightarrow (Y, σ) be the function defined by f(a)=b, f(b)=c, f(c)=a. Here f is supra N-continuous but not completely supra N-continuous, since V={a,c} is s u p r a N - closed in (Y, σ) but f $^{-1}(\{a,c\}) = \{a,b\}$ is not suprareg ular closed set in (X, τ).

3.7. Theorem

Every completely supra N-continuous function is supra N-irresolute function.

Proof Let $f:(X, \tau) \to (Y, \sigma)$ be a completely supra N-continuous function. Let V be supra N-closed set in (Y, σ) . Since f is completely supra N-continuous function, then f $^{-1}(V)$ is supra regular closed in (X, τ) . Since every supra regular closed set is supra closed set and every supra closed set is supra N-closed set, then f $^{-1}(V)$ is supra N-closed in (X, τ) . Therefore f is supra N-irresolute function.

The converse of the above theorem need not be true. It is shown by the following example.

3.8. Example

Let X=Y={a, b, c} and $\tau = \{X, \varphi, \{a\}, \{b, c\}\}, \sigma = \{Y, \varphi, \{a\}\}$. Let f:(X, τ) \rightarrow (Y, σ) be the function defined by f(a)=b, f(b)=c, f(c)=a. Here f is supra N-irresolute but not completely supra N-continuous, since V={a,c} is s u p r a N - closed in (Y, σ) but f⁻¹({a,c}) = {a,b} is not supra regular closed set i n (X, τ).

3.9. Theorem

Every completely supra N-continuous function is strongly supra N-continuous function.

Proof Let $f:(X, \tau) \to (Y, \sigma)$ be a completely supra N-continuous function. Let V be supra N-closed set in (Y, σ) . Since f is completely supra N-continuous function, then f⁻¹(V) is supra regular closed in (X, τ) . Since every supra regular closed set is supra closed set, then f⁻¹(V) is supra closed in (X, τ) . Therefore f is strongly supra N-continuous function.

The converse of the above theorem need not be true. It is shown by the following example.

3.10. Example

Let $X=Y=\{a, b, c\}$ and $\tau = \{X, \varphi, \{a\},\{b\},\{a,b\},\{b,c\}\}, \sigma = \{Y,\varphi,\{a,b\},\{b,c\}\}$. Let $f:(X,\tau) \rightarrow (Y, \sigma)$ be the function defined by f(a)=a, f(b)=c, f(c)=b. Here f is strongly supra N-

continuous but not compl etely supra Ncontinuous, since V={a,c} is s u p r a N - closed in (Y, σ) but f⁻¹({a,c}) = {a,b} is not supra regular closed set i n (X, τ).

3.11. Remark

Composition of two completely supra Ncontinuous function is completely supra Ncontinuous

3.12. Theorem

If f:(X, τ) \rightarrow (Y, σ) is supra N-continuous and g: (Y, σ) \rightarrow (Z, η) is completely supra N-continuous then gof: (X, τ) \rightarrow (Z, η) is supra N-irresolute.

Proof Let V be supra N-closed set in Z. Since g is completely supra N-continuous, then $g^{-1}(V)$ is supra regular closed set in Y. Since every supra regular closed set is supra closed set, $g^{-1}(V)$ is supra closed set in Y. Since f is supra N-continuous, then $f^{-1}g^{-1}(V)$ is supra N-closed in X. Hence gof is supra N-irresolute.

3.13. Theorem

If f:(X, τ) \rightarrow (Y, σ) is completely supra Ncontinuous and g: (Y, σ) \rightarrow (Z, η) is supra Ncontinuous then gof: (X, τ) \rightarrow (Z, η) is completely supra continuous.

Proof Let V be supra closed set in Z. Since g is supra N-continuous, then $g^{-1}(V)$ is supra N-closed set in Y. Since f is completely supra N-continuous, then $f^1g^{-1}(V)$ is supra regular closed set in X. Hence gof is completely supra N-continuous.

3.14. Theorem

If f:(X, τ) \rightarrow (Y, σ) is strongly supra Ncontinuous and g: (Y, σ) \rightarrow (Z, η) is completely supra N-continuous then gof: (X, τ) \rightarrow (Z, η) is strongly supra continuous. Proof Let V be supra N-closed set in Z. Since g is completely supra N-continuous, then g⁻¹(V) is supra regular closed set in Y. Since every supra regular closed set is supra closed set and every supra closed set is supra N-closed set, g⁻¹(V) is supra N-closed set in Y. Since f is strongly supra N-continuous, then f⁻¹g⁻¹(V) is supra closed set in X. Hence gof is strongly supra N-continuous.

3.15. Remark

The following implications is obtained from the above theorems

Completely supra N-continuous \rightarrow strongly supra N-continuous \rightarrow supra N-irresolute \rightarrow supra N-continuous

REFERENCES

- Devi, R., S. Sampathkumar and M. Caldas, (2008). On supra α open sets and s α -continuous maps. *General Math.*, **16**(2): 77-84.
- Levine, N. (1991). Semi-open sets and Semicontinuity in topological spaces. *Amer. Math.*, **12**: 5-13.
- Mashhour, A.S., A.A. Allam, F.S. Mahmoud and F.H. Khedr, (1983). On supra topological spaces. *Indian J. Pure Appl. Math.*, **14**(A): 502-510.
- Noiri, T. and O.R. Sayed, (2005). On Ω closed sets and Ω s closed sets in topological spaces. *Acta. Math.*, **4**: 307-318.
- Vidyarani, L. and M. Vigneshwaran, (2013a). N-Homeomorphism and N*-Homeomorphism in supra topological spaces. *Int. J. Math. Stat. Inven.*, **1**(2): 79-83.
- Vidyarani, L. and M. Vigneshwaran, (2013b). On supra N-closed and sN-closed sets in supra Topological spaces. *Int. J. Math. Arch.*, **4**(2): 255-259