Kong. Res. J. 3(1) : 15-16, 2016 Kongunadu Arts and Science College, Coimbatore.

ON *gα-FUZZY CLOSED SETS IN FUZZY TOPOLOGICAL SPACES

Devi, R. and M. Vigneshwaran*

Department of Mathematics, Kongunadu Arts And Science College (Autonomous), Coimbatore-29. *E.mail: vignesh.mat@gmail.com

ABSTRACT

In this paper we introduce the concept of ${}^{*}g\alpha$ - fuzzy closed sets in fuzzy topological spaces and study some of its properties.

Keywords: *gα- fuzzy closed sets.

1. INTRODUCTION

Levine introduced generalized closed sets (Levine, 1970) in topological spaces. The concept of fuzzy closed set (Chang, 1968) is an important role in fuzzy topological spaces. The concept of $g\alpha$ -closed sets (Maki *et al.*, 1993) in a topological space was introduced.

Throughout this paper X and Y are represents fuzzy topological spaces. For a fuzzy set A of a topological spaces X, the notations cl(A), Int(A) and 1-A will respectively stand for the fuzzy closure, fuzzy interior and fuzzy compliment of A.

2. *gα- FUZZY CLOSED SETS IN FUZZY TOPOLOGICAL SPACES

DEFINITION 2.1 (Balasubramanian and Sundram, 1997)

Let X be a fuzzy topological space. A fuzzy set p in X is called fuzzy generalized -closed if $cl(p) \le q$, whenever $p \le q$ and q is fuzzy open.

DEFINITION 2.2 (Devi and Bhuvaneswari, 2006)

Let X be a fuzzy topological space. A fuzzy set p in X is called fuzzy $g\alpha$ -closed if $\alpha cl(p) \le q$, whenever $p \le q$ and q is fuzzy α -open.

DEFINITION 2.3

A fuzzy set p in X is called ${}^{*}g\alpha$ -fuzzy closed if $cl(p) \le q$, whenever $p \le q$ and q is fuzzy $g\alpha$ -open.

THEOREM 2.4

Every ${}^{*}g\alpha$ -fuzzy closed set is fuzzy g-closed.

PROOF

Let $p \le q$ and q is fuzzy open. But every fuzzy open set is fuzzy $g\alpha$ -open. Since p is $*g\alpha$ -fuzzy closed, $cl(p) \le q$ and q is fuzzy $g\alpha$ -open. Therefore p is fuzzy g-closed. The converse of the above theorem need not be true by the following example.

EXAMPLE 2.5

Let X = {a, b, c}. Define the fuzzy sets A,B,C : X [0, 1] as follows.

A(a) = 0.2	B(a) = 0.6	C(a) = 0.3
A(b) = 0.3	B(b) = 0	C(b) = 0.2
A(c) = 0.7	B(c) = 1	C(c) = 1

Consider the fuzzy topology $\tau = \{0, 1, C\}$. Here A and B are fuzzy g-closed set. but not $*g\alpha$ -fuzzy closed set.

THEOREM 2.6

If A and B are ${}^*g\alpha$ -fuzzy closed set in X, then $A \lor B$ is a ${}^*g\alpha$ -fuzzy closed set in X.

PROOF

Assume that A and B are ${}^*g\alpha$ -fuzzy closed set in X. Let q be a fuzzy $g\alpha$ -open set in X such that $A\leq q$ and $B\leq q$. Then $A\vee B\leq q$. Since A and B are ${}^*g\alpha$ -fuzzy closed cl(A) $\leq q$ and cl(B) $\leq q$. Therefore

 $cl(A \lor B) = cl(A) \lor cl(B)$

$$\leq q \lor q$$

= q.

Implies $cl(A \lor B) \le q$. Hence $A \lor B$ is $*g\alpha$ -fuzzy closed set in X.

THEOREM 2.7

Let A is *g α -fuzzy closed set in a fuzzy topological space X, and A \leq B \leq cl(A), then B is *g α -fuzzy closed set in X.

PROOF

Let q be a fuzzy g α -open set such that B \leq q. Then A \leq q, since A is *g α -fuzzy closed set in X, cl(A) \leq q. Now $B \le cl(A)$ implies $cl(B) \le cl(cl(A)) = cl(A) \le q$. Hence B is ${}^{*}g\alpha$ -fuzzy closed set in X.

THEOREM 2.8

Let X be a fuzzy topological space. A fuzzy set A of X is $*g\alpha$ -fuzzy open if and only if B \leq Int(A), whenever B is fuzzy $g\alpha$ -closed set and B \leq A.

PROOF

Let A be a *g α -fuzzy open set and B is fuzzy g α -closed such that $B \le A$ implies 1-B \ge 1-A is *g α -fuzzy closed. So cl(1-A) \le 1-B implies (1-cl(1-A)) \ge (1-(1-B)) = B. But (1-cl(1-A)) = Int(A). Thus $B \le$ Int(A).

Conversely, suppose that A is fuzzy set such that $B \le Int(A)$, whenever B is fuzzy $g\alpha$ -closed set and $B \le A$. We show that 1-A is $*g\alpha$ -fuzzy closed set. Let $1-A \le B$, where B is fuzzy $g\alpha$ -open. Since $1-A \le B$ implies that $1-B \le A$. By assumption that we must have $1-B \le Int(A)$ or $1-Int(A) \le B$. Now 1-Int(A) = cl(1-A) which implies that $cl(1-A) \le B$ and 1-A is $*g\alpha$ -fuzzy closed set.

THEOREM 2.9

Let A is $*g\alpha$ -fuzzy open set in a fuzzy topological space X and Int(A) $\leq B \leq A$, then B is $*g\alpha$ -fuzzy open set in X.

PROOF

Given that $Int(A) \le B \le A$, we have $1-A \le 1-B \le 1$ -Int(A). Since A is *ga-fuzzy open in X, 1-A is *ga-fuzzy closed in X and so by theorem 2.7, 1-B is *ga-fuzzy closed in X. Hence B is *ga-fuzzy open in X.

THEOREM 2.10

Let X be a fuzzy topological space and $g\alpha$ -fopen(X) stand for the family of all $g\alpha$ -fuzzy open set of X and $g\alpha$ -f-closed(X) stand for the family of all $g\alpha$ fuzzy closed set of X. If every fuzzy subset of X is a * $g\alpha$ -fuzzy closed set then $g\alpha$ -f-open(X) = $g\alpha$ -fclosed(X).

PROOF

Let us assume that every fuzzy set p is *ga-fuzzy closed set in X. Let $p \in g\alpha$ -f-open(X). Since $p \leq p$ and p is *g α -fuzzy closed set, we have cl(p) $\leq p$, but $p \leq cl(p)$. Therefore cl(p) = p implies p is $g\alpha$ -f-closed(X). Therefore

$g\alpha$ -f-open(X) \subseteq $g\alpha$ -f-closed(X) (1)

Assume that p is $g\alpha$ -f-closed(X) then 1-p is $g\alpha$ -fuzzy open. By(1) $g\alpha$ -f-open(X) $\subseteq g\alpha$ -f-closed(X). Implies 1-p is $g\alpha$ -f-closed(X) implies p is $g\alpha$ -f-open(X). Hence

 $g\alpha$ -f-closed(X) \subseteq $g\alpha$ -f-open(X) (2)

From (1) and (2) we get $g\alpha$ -f-open(X) = $g\alpha$ -f-closed(X).

REMARK 2.11

A and B are ${}^*g\alpha\text{-}fuzzy$ closed set, but $A\wedge B$ is not ${}^*g\alpha\text{-}fuzzy$ closed set.

It can be seen by the following example.

EXAMPLE 2.12

Let X = {a, b, c}. Define the fuzzy sets A,B,C : X [0, 1] as follows.

A(a) = 0.7	B(a) = 0.3	C(a) = 0.3
A(b) = 0.8	B(b) = 1	C(b) = 0.2
A(c) = 1	B(c) = 1	C(c) = 1

Consider the fuzzy topology $\tau = \{0, 1, C\}$. It is clear that A and B are^{*}g α -fuzzy closed set. But A \wedge B is not a ^{*}g α -fuzzy closed set.

REFERENCES

- Balasubramanian, G. and P. Sundram, (1997). On some generalizations of fuzzy continuous functions, *Fuzzy sets and systems* **86**:93–100.
- Chang C.L., (1968). Fuzzy topological spaces. J. Math. Anal. Appl. **24**:182 – 190.
- Devi, R and K. Bhuvaneswari, (2006). On Fuzzy generalized α -continuous functions and its homeomorphisms, *Bull. Kerala Math. Assoc.* **3**(1):1-22.

Levine, N., (1970). Generalized closed sets in topology, *Red. Circ. Math. Palermo* **19**:89-96.

Maki, H., R. Devi and K. Balachandran, (1993). Generalized α-closed sets in topology, *Bull. Fukuoka Univ. Ed.* Part III, **42**:13-21.