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ABSTRACT 

In this paper we introduce the concept of *gα- fuzzy closed sets in fuzzy topological spaces and study 
some of its properties. 
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1. INTRODUCTION 

Levine introduced generalized closed sets 
(Levine, 1970) in topological spaces. The concept of 
fuzzy closed set (Chang, 1968) is an important role  
in fuzzy topological spaces. The concept of g-closed 
sets (Maki et al., 1993) in a topological space was 
introduced. 

Throughout this paper X and Y are 
represents fuzzy topological spaces. For a fuzzy set A 
of a topological spaces X, the notations cl(A), Int(A) 
and 1-A will respectively stand for the fuzzy closure, 
fuzzy interior and fuzzy compliment of A. 

2. *gα- FUZZY CLOSED SETS IN FUZZY 
TOPOLOGICAL SPACES 

DEFINITION 2.1 (Balasubramanian and Sundram, 
1997) 

Let X be a fuzzy topological space. A fuzzy 
set p in X is called fuzzy generalized -closed if cl(p) 

q, whenever p q and q is fuzzy open. 

DEFINITION 2.2 (Devi and Bhuvaneswari, 2006) 

Let X be a fuzzy topological space. A fuzzy 
set p in X is called fuzzy g-closed if cl(p) q, 
whenever p q and q is fuzzy -open. 

DEFINITION 2.3 

A fuzzy set p in X is called *g-fuzzy closed if 
cl(p) q, whenever p q and q is fuzzy g-open. 

THEOREM 2.4 

Every *g-fuzzy closed set is fuzzy g-closed. 

PROOF 

Let p q and q is fuzzy open. But every fuzzy 
open set is fuzzy g-open. Since p is *g-fuzzy closed, 
cl(p) q and q is fuzzy g-open. Therefore p is fuzzy 
g-closed. 

The converse of the above theorem need not 
be true by the following example. 

EXAMPLE 2.5 

Let X = {a, b, c}. Define the fuzzy sets A,B,C : 
X [0, 1] as follows. 

A(a) = 0.2 B(a) = 0.6 C(a) = 0.3 

A(b) = 0.3 B(b) = 0 C(b) = 0.2 

A(c) = 0.7 B(c) = 1 C(c) = 1 

Consider the fuzzy topology τ = {0, 1, C}. 
Here A and B are fuzzy g-closed set. but not *g-fuzzy 
closed set. 

THEOREM 2.6 

If A and B are *g-fuzzy closed set in X, then 
A B is a *g-fuzzy closed set in X. 

PROOF 

Assume that A and B are *g-fuzzy closed set 
in X. Let q be a fuzzy g -open set in X such that A  q 
and B  q . Then A B  q. Since A and B are *g-fuzzy 
closed cl(A)  q and cl(B)  q . Therefore 

cl(A B) = cl(A)  cl(B) 

 q  q 

= q. 

Implies cl(A B)  q. Hence A B is *g-fuzzy closed 
set in X. 

THEOREM 2.7 

Let A is *g-fuzzy closed set in a fuzzy 
topological space X, and A  B  cl(A), then B is *g- 
fuzzy closed set in X. 

PROOF 

Let q be a fuzzy g-open set such that B q. 
Then A  q, since A is *g-fuzzy closed set in X, cl(A)
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q. Now B cl(A) implies cl(B) cl(cl(A)) = cl(A)  q. 
Hence B is *g-fuzzy closed set in X. 

THEOREM 2.8 

Let X be a fuzzy topological space. A fuzzy 
set A of X is *g-fuzzy open if and only if B Int(A), 
whenever B is fuzzy g -closed set and B  A. 

PROOF 

Let A be a *g-fuzzy open set and B is fuzzy 
g-closed such that B  A implies 1-B  1-A is *g- 
fuzzy closed. So cl(1-A)  1-B implies (1-cl(1-A))  

(1-(1-B)) = B. But (1-cl(1-A)) = Int(A). Thus B 

Int(A). 

g-f-open(X)  g-f-closed(X) (1) 

Assume that p is g-f-closed(X) then 1-p is 
g-fuzzy open. By(1) g-f-open(X)  g-f-closed(X). 
Implies 1-p is g-f-closed(X) implies p is g-f- 
open(X). Hence 

g-f-closed(X)  g-f-open(X) (2) 

From (1) and (2) we get g-f-open(X) = g- 
f-closed(X). 

REMARK 2.11 

A and B are *g-fuzzy closed set, but A  B is 
not *g-fuzzy closed set. 

Conversely, suppose that A is fuzzy set such 
that B Int(A), whenever B is fuzzy g -closed set 
and B  A. We show that 1-A is *g-fuzzy closed set. 
Let 1-A  B, where B is fuzzy g-open. Since 1-A  B 
implies that 1-B  A. By assumption that we must 
have 1-B  Int(A) or 1-Int(A)  B. Now 1-Int(A) = 
cl(1-A) which implies that cl(1-A)  B and 1-A is *g- 
fuzzy closed set. 

THEOREM 2.9 

Let A is *g-fuzzy open set in a fuzzy 
topological space X and Int(A)  B  A, then B is *g- 
fuzzy open set in X. 

PROOF 

Given that Int(A)  B  A, we have 1-A 1-B 

 1-Int(A). Since A is *g-fuzzy open in X, 1-A is *g- 
fuzzy closed in X and so by theorem 2.7, 1-B is *g- 
fuzzy closed in X. Hence B is *g-fuzzy open in X. 

THEOREM 2.10 

Let X be a fuzzy topological space and g-f- 
open(X) stand for the family of all g-fuzzy open set 
of X and g-f-closed(X) stand for the family of all g- 
fuzzy closed set of X. If every fuzzy subset of X is a 
*g-fuzzy closed set then g-f-open(X) = g-f- 
closed(X). 

PROOF 

Let us assume that every fuzzy set p is *g- 
fuzzy closed set in X. Let p g-f-open(X). Since p  p 
and p is *g-fuzzy closed set, we have cl(p)   p, but  
p  cl(p). Therefore cl(p) = p implies p is g-f- 
closed(X). Therefore 

It can be seen by the following example. 

EXAMPLE 2.12 

Let X = {a, b, c}. Define the fuzzy sets A,B,C : 
X [0, 1] as follows. 

A(a) = 0.7 B(a) = 0.3 C(a) = 0.3 

A(b) = 0.8 B(b) = 1 C(b) = 0.2 

A(c) = 1 B(c) = 1 C(c) = 1 

Consider the fuzzy topology τ = {0, 1, C}. It is 
clear that A and B are*g-fuzzy closed set. But A  B 
is not a *g-fuzzy closed set. 
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