INVASIVE PLANTS - A BOON OR BANE TO THE LEPIDOPTERON FAUNA: CONSERVATION AND MANAGEMENT PLAN SUGGESTIONS

Arjun, C.P^{1,5}., V.K. Anoop², K.J. Tijo³, T.K. Anoopkumar³ and R. Roshnath^{4 & 5}

¹School of Ecological Informatics, Indian Institute of Information Technology and Management- Kerala, Trivandrum, Kerala. ²Department of Zoology, Bharathiar University, Coimbatore, Tamil Nadu. ³Center for Wildlife Studies, Kerala Veterinary and Animal Sciences University, Pookode, Wayanad.

⁴Central University of Kerala, Kasargod, Kerala. ⁵Malabar Awareness and Rescue Centre, Kannur, Kerala.

ABSTRACT

Butterfly diversity was recorded from Nov (2013) - May (2014) in Pookode region. A total number of 128 species recorded from the five families; Nymphalidae (46 species) Lycaenidae (28 species), Hesperiidae (22 species), Pieridae (17 species) and Papilionidae (15 species) respectively. During the survey invasive plant species were also recorded. There were 36 species of invasive plants from 18 families identified from the study area. More butterflies were attracted towards nectar offering invasive plants. *Chromolaena odorata, Ipomea cairica, Lantana camara, Merremia vitifolia, Mikania micrantha, Mimosa diplotricha, Pennisetum polystachyon, Pteridium aquilinum, Quisqualis indica* and *Sphagneticola trilobata* were the major invasive plants found in the Pookode region and their flower attracts butterfly for pollination. Even though nectar offered by the plants are supportive for growth, in long run these species can affect butterfly population by declining native host larval plant species for butterfly reproduction. Invasive species compete with the native flora and reduce its population. Management practices like physical, chemical and modern bio control measures could be used for eradicating of invasive plants. Wise use of invasive plants for other economical purpose such as bio-fuel, medicinal purpose, bio-pesticide and handicraft could be suggested. Successful management of invasive species are needed for conserving Lepidoptera fauna and other native biota of the area.

Keywords: Butterflies, invasive plants, host plants, management practices, conservation.

1. INTRODUCTION

Arthropods occupy half of earth's biodiversity (May, 1992) among these, butterflies fascinate the most. Their interaction with the ecosystem as pollinators and herbivorous are notable (Tiple et al., 2006). They are highly sensitive to solar radiation, temperature and variations in micro habits (Thomas et al., 1998). Anthropogenic disturbance and habitat quality variation (Kocher and Williams, 2000) reflects butterfly lifestyle, because of these reasons butterflies chose good candidate as bio-indicators to access habitat fragmentation, soil degradation and water pollution (Kehimkar, 2000). The Indian subcontinent hosts about 1,504 species of butterflies, and Western Ghat hosts 351species of butterflies (Smetacek, 1992; Gaonkar, 1996; Kunte, 2009; Roy et al., 2010and Tiple, 2011). The amount of the Indian butterflies is one fifth of the world butterflies (Kunte, 2000).The diversity and distribution of a particular species of butterfly is dependent not only on the geography of the area and the ability of the species to move around within it, but also on the ecological demands of the species (Khan et al., 2011).

Many of the butterflies are strictly seasonal and prefer particular set of habitat (Kunte, 1997). Butterflies and plants have intimate relationship, as food source and as larval host plants. (Feltwell, 1986). Butterfly diversity and abundance would be more in that vegetation which offers these. Invasion of invasive species were noted during the survey. Showy flowers of invasive species may draw pollinators (Armbruster and Herzig, 1984). This reduces the reproductive capacity of native plants (Brown 2002).

2. METHODOLOGY

Population survey of Lepidoptera were conducted monthly once between Nov (2013) May (2014) in the campus using line pollard walk method (Pollard, 1977). Survey was conducted from 8.00AM to 11.00 AM during the peak activity of butterflies. Species were identified through direct observation, photographs, eggs, pupa and larval forms with the help of field guides (Wynder-Blyth, 1957; K. Kunte, 2000; Kehimkar, 2008; George M, 2011)

2.1. Study area

Pookode located in Vythiri Panjayath which is southern part of Wayanad District. Pookode has mixed vegetative types including grassland, moist deciduous forest, semi-evergreen forest, plantations, rocky areas and riverine streams. Altitude varies 745-930 meter from the sea level and average temperature is about 25.75°C and annual rainfall is 5318 mm.

Study area hosts several types of vegetation, semi-evergreen patches were found adjacent to plantation (mainly coffee and tea) with large trees in between. Invasive species like Chromolaena odorata and Mikania micrantha were also observed along with the other native vegetation. Scrub land consists of open hilly terrains along with grassland habitat towards the summit of the Pookode region. Grasses such as Cymbopogon citrates and trees like Careya arborea dominate the habitat. Lantana camara and Chromolaena odorata are the dominating invasive species in the scrub land habitat. Riparian habitats run along the streamlets of Vythiri River towards the base of the Pookode where reeds are dominating the vegetation. Sphagneticola trilobata were the major invasive vegetation in riverine habitat.

3. RESULTS AND DISCUSSION

A total number of 128 species (Table.1) recorded from the five families. Nymphalidae (46 species) is the most abundant and Papilionidae (15 species) is the least abundant. Lycaenidae (28 species), Hesperidia (22 species), Pieridae (17 species) recorded respectively (Fig:1).

Fig. 1: Family wise abundance in the butterfly species in the Pookode region.

The Pookode region host rich Lepidoptera diversity and abundance. Many of the species recorded in the region are of conservational importance. Fourteen species belongs to scheduled list of Indian Wildlife protection act 1972 Scheduled I; *-Atrophaneura hector, Papilio liomedon, Hypolimnas misippus,* Scheduled II; *Papilio Buddha,* Kallima horsfieldi, Euthalia aconthea, Libythea lepita, Tanaecia lepidea, Discophora lepida, Appias albino, Spindasis lohita, Lampides boeticus, Scheduled IV;-Prioneris sita, Tarucus ananda. 10 species were endemic to the Western Ghats they are Troides minos, Kallima horsfieldi, Idea malabarica, Curetis siva, Aeromachus pygmaeus, Zipaetis saitis (Western Ghats and SriLanka), Papilio buddha, Papilio liomedon, Discophora lepida, Discophora lepida, Mycalesis patina. Occurrence of Blue Nawab (Polyura schreiber) was a rare record in the state. Hence the area must be conserved for promoting Lepidoptera diversity.

Threats faced by butterflies in the area are urbanization and construction activities leading to habitat fragmentation that force butterflies to settle in narrow habitats causing population decline. Cattle grazing were another threat in the area where larval host plants are grazed by cattle which affect butterfly population (Runquist, 2011). But threats due to invasive plant species were considered higher than the others.

There is an intimate relationship between butterflies and plants (Feltwell, 1986), butterflies needs plants as food source and as larval host plants where as plants need these insects for pollination

Butterflies were found to feed on nectars of invasive plant species like *Chromolaena odorata*, *Ipomea cairica*, *Lantana camara*, *Merremia vitifolia*, *Mikania micrantha*, *Mimosa diplotricha*, *Pennisetum polystachyon*, *Pteridium aquilinum*, *Quisqualis indica* and *Sphagneticola trilobata* etc. Most of these plants provide nectar throughout the year (Nimbalkar *et al.*, 2011) to the butterflies but none of these invasive plants host butterfly larval forms of single species of butterflies.

Egg laying of Acacia Blue butterfly were observed in *Mimosa invasia* during the survey. *Acheronita styx* (Death's headed hawk moth) laying egg in *Lantana camara* was reported by Kehimkar, 2000, but prefer less. A total 36 species of invasive plants recorded (Table: 2) from the study area among the plants *Chromolaena odorata, Clidemia hirta, Lantana camara, Leucaena leucocephala and Mikania micrantha* enlisted in IUCN world 100 worst invaders because of its ability to dominate and devastate native biota (Lowe *et al.*. 2000).

Invasive plants are second largest threat to the biodiversity after habitat destruction (Enserink, 1999). Many of the invasive species become invades and explore higher than in their native regions. (D'Antonio and Vitousek 1992; Ridenour and Callaway 2001; Louda et al., 2003). These invasive species can cause large decreases in the abundances of native species (Braithwaite *et* al.. 1989; Memmott et al.. 2000; Grigulis et al.. 2001). Invasive species compete with native species in different ways including competition for nutrients (Wardle et al., 1994), Water (Delph 1986), Light (Grace and Wetzel 1981, 1982, Weihe and Neely 1997), space (Agren and Fagerstrdm 1980, Newsome and Noble 1986), competitive release, and predatory release (Rodriguez, 2006). These competitions may reduce the ability of native species to maintain or increase population size (Huenneke and Thomson 1995).

Beyond such vegetative competition, competition for pollinator services by invasive plants may also reduce the reproductive capacity of native plants (Brown, 2002). More butterflies were observed in the areas where high populations of Lantana camara, Mikania micarantaand C. odorata were present. An experimental study showed that butterflies are more attracted to amino acid contacting nectar provided by L. camara. (Alm, 1990). Some substances produced by the allelopathic effect of invasive species like Lantana camara, (Sharma et al., 2007., Kumbhar and Patel 2013 Mishra 2013, 2014, Gantayet et al., 2014.). C. odorata and Mikania micaranta (Sahid, 2014)are well documented Organic substances produce by plants as secondary metabolites such as alkaloids, Phenoics, flavonoids, Terpenoids and Glucosinolates are known to inhibit the seed germination, growth and development of other species (Rice, 1974; Day et al..,2003)

Showy invasive species may draw pollinators away from native species, decreasing visit quantity (Free, 1968, Waser, 1978a, Gross and Werner 1983, Armbruster and Herzig, 1984) hence pollinations by butterflies and other insects were more in invasive plants thereby improving their propagation. Research shows native species suffers significantly reduced seed set in the presence of an aggressive invading congener when the species share the same kind of pollinators (Brown, 2002).

3.1. Major invasive plants and its invasion in the study area

Lantana was the major invasive plant in the study area. It was introduced as an ornamental plan into many tropical and subtropical world from its native south and Central America during nineteenth and early twentieth century (Mack *et al.* 2000). Thereafter like all other invasive species Lantana

had established causing threat to biodiversity (Hiremath and Sundaram., 2005). It is having high regeneration capacity and can also survive in degraded soils (Bhatt *et al.*, 1994; Rawat *et al.*, 1994). Lantana is exceedingly efficient at nutrient uptake and use, enabling it to grow on highly impoverished soils (Bhatt *et al.*, 1994; Rawat *et al.*, 1994) Lantana may be favored by disturbances such as fire and grazing (Duggin and Gentle 1998; Gentle and Duggin, 1998).

Another important invasive species in the *Chromolaena odorata* (L.) study area was (Asteraceae). Florets of these plants attract butterflies and form an important nectar source for adult butterflies (Lakshmi and Raju, 2011). A study in Bangladesh showed 55 species of butterflies use this plant as a source of nectar (Shihan and Kabir, 2015). Arrangement of florets provide convenient landing place for butterflies and a butterfly can probe several flowers at a time in single visit (Lakshmi and Raju, 2011). Hexose rich sugar and high amino acid concentration in Asteraceae plants can attract butterflies and other pollinators (Baker and Baker 1983., Galetto and Bernardello, 2003).

Clidemia hirta, commonly called Koster's Curse which is a native Tropical America listed under IUCN 100 worst invasive species was another invasive species found during the survey. They are densely branched shrub up to 5 m tall, normally between 0.5 and 3 m. *C. hirta* have pinkish white flowers and dark blue berries. It is an aggressive colonizer which can produce 500 berries which contain 100 seeds per fruit.

Mikania micrantha one among the worst invasive plants of the World which belongs to the family Asteraceae (Lowe *et al.*, 2000). There are of 250 species in this genus Mikania however 4 species are known to be invasive. Among these *Mikania micrantha* is the only invasive plant in Asia-Pacific region. This is an invading creeper can grow 8-9 cm a day and able to create a thick envelope over the native biota eventually devastate native plants by blocking sunlight and its allelopathic effect. Flowers are good nectar source for many insects including butterflies which accelerate the pollination and spreading of the Mikania.

3.2. Removal and alternative uses of Invasive plant species

Past hundred years about 40 species of pathogens and insects tried on Lantana as bio control agents but none of them can acquire significant effect on Lantana (Sankaran *et al.*, 2010).

Here the importance of biofuel production from *Latana camara*. Bioethanol property of *Lantana camera* (Ramesh *et al.*, 2010) and its low cost production were identified. An industrial level production of biofuel can make significant control over the Lantana. Further research are needed to identify similar characteristics of other invasive plants.

A management method that involves manual or mechanical means to remove or alter growing conditions of invasive plants are termed physical methods. This method prevent invasive plant establishment, as when soils are frequently hoed or tilled to disturb the soil seed bank and uproot seedlings (Radosevich *et al.*, 1997). After any physical treatment, it is important to inspect tools and equipment and to safe disposal (burning) of invasive plant to prevent propagation to new sites (Holloran *et al.*, 2004). Physical removal or destruction of invasive plants can often be the first, simplest, and most cost effective response to a small new population (Venner, 2006).

Another method involves use of Chemical herbicides to manage invasive plants. Herbicides can efficiently and effectively suppress or kill unwanted plants but should be used judiciously, safely, and in a way that minimizes adverse effects on non-target resources. (D'Antonio *et al.*, 2004)

Biocontrol was a new technological approach towards irradiation of invasive plants. Biological control (or biocontrol) reunites invasive plants with their enemies to restore natural controls and reduce dominance of invasive plants within the plant community. Any plant populations are regulated by their environment and the influence of natural enemies (Crawley 1997). Since no potential enemies are present for invasive species, they flourish in the invaded area. Absence of natural enemies contributes to the invasiveness of some nonnative plants (Keane and Crawley, 2002). Feeding of Lantana leaves by Death faced hawk moth larvae (Acheronita styx) is reported (Kehimkar, 2000) which can be used as natural predator of the invasive species. Insect like Teleonemia scrupulosa and fungus pathogens Prospodium tuberculatum can create dominance over Lantana in some places (Sankaran et al., 2010). The strong shoots of Lantana can be used for making handicrafts and furniture. A combined effort of bio-control, chemo-control and mechanical control measures is the best method to devastate Lantana of Pookode region.

Importing of *Layothrips mikania* from the Tridnad failed to adapt with the climatic condition of Solomon Islands and Malaysia against *Mikania micrantha*, but the fungal pathogens *Paksinia spegastini* can create serious effect on Mikania. This pathogens can creates disease only to the Mikania is another advantage (Sankaran *et al.*, 2010).

S. No.	Common name	Scientific name	Status	Wildlife Protection Act 1972	Western ghat endemics	
	Papilionodae (Tailed butterflies)					
1	BLUE MORMON	Papilio polymnestor (Cramer)				
2	COMMON BLUEBOTTLE	Graphium sarpedon (Linnaeus)				
3	COMMON JAY	Graphium doson (C. and R. Felder)				
4	COMMON MORMON	Papilio polytes (Linnaeus)				
5	COMMON MIME	Chilasa clytia (Linnaeus)				
6	COMMON ROSE	Atrophaneura aristolochiae (Fabricius)				
7	CRIMSON ROSE	Atrophaneura hector (Linnaeus)		S1		
8	LIME BUTTERFLY	Papilio demoleus (Linnaeus)				
9	PARIS PEACOCK	Papilio paris (Linnaeus)				
<i>10</i> 11	RED HELEN	Papilio helenus (Linnaeus)				
	MALABAR BANDED PEACOCK	Papilio buddha (Westwood)	R	S2	WE	

Table 1. List of Butterflies species recorded in the survey conducted in Pookode region.

12	MALABAR BANDED SWALLOWTAIL	Papilio liomedon (Moore)	R	S1	WE
13	MALABAR ROSE	Atrophaneura pandiyana (Moore)			WE
14	SOUTHERN BIRDWING	Troides minos (Cramer)			WE
15	TAILED JAY	Graphium agamemnon (Linnaeus)			
		<u>Nymphalidae (Brushfooted bu</u>	<u>tterflies)</u>		
16	BAMBOO TREEBROWN	Lethe europa (Fabricius)			
17	BLACK PRINCE	Rohana parisatis (Westwood)	R		
18	BLUE NAWAB	Polyura schreiber (Godart)	R		
19	SOUTH INDIAN BLUE OAKLEAF	Kallima horsfieldi (Kollar)	R	S2	WE
20	BLUE ADMIRAL	Kaniska canace (Linnaeus)			
21	BLUE PANSY	Junonia orithiya (Linnaeus)			
22	BLUE TIGER	Tirumala limniace (Cramer)			
23	CHOCOLATE PANSY	Junonia iphita (Cramer)			
24	CLIPPER	Parthenos sylvia (Cramer)			
25	COMMON BARON	Euthalia aconthea (Cramer)		S2	
26	COMMON BEAK	Libythea lepita (Moore)		S2	
27	COMMON BUSHBROWN	Mycalesis perseus (Fabricius)			
28	COMMON CASTOR	Ariadne merione (Cramer)			
29	BROWN	Melanitis leda (Linnaeus)			
30	COMMON FIVERING	Ypthima baldus (Fabricius)			
31	COMMON FOURRING	Ypthima huebneri (Kirby)			
32	COMMON INDIAN CROW	Euploea core (Cramer)			
33	COMMON LASCAR	Pantoporia hordonia (Stoll)			
34	COMMON MAP	Cyrestis thyodamas (Boisduval)			
35	COMMON LEOPARD	Phalanta phalantha (Drury)			
36	COMMON NAWAB	Polyura athamas (Drury)			
37	COMMON PALMFLY	Elymnias hypermenstra (Lennaeus)			
38	COMMON SAILER	Neptis hylas (Linnaeus)			
39	COMMON SERGEANT	Athyma perius (Linnaeus)			
40	COMMON TREEBROWN	Lethe rohria (Fabricius)			
41	CRUISER	Vindula erota (Fabricius)	R		
42	DANAID EGGFLY	Hypolimnas misippus (Linnaeus)		S1	
43	DARK BLUE TIGER	Tirumala septentrionis (Butler)			
44	DARK EVENING BROWN	Melanitis phedima (Cramer)			
45	GLADEYE BUSHBROWN	Mycalesis patnia (Moore)			Western Ghats and Sri Lanka

46	GLASSY TIGER	Parantica aglea (Stoll)			
47	GREAT EGGFLY	Hypolimnas bolina (Linnaeus)			
48	GREY COUNT	Tanaecia lepidea (Butler)		S2	
49	GREY PANSY	Junonia atlites (Linnaeus)			
50	LEMON PANSY	Junonia lemonias (Linnaeus)			
51	MALABAR TREE NYMPH	Idea malabarica (Moore)	R		WE
52	NIGGER	Orsotrioena medus (Fabricius)			
53	RUSTIC	Cupha erymanthis (Drury)			
54	SOUTHERN DUFFER	Discophora lepida (Moore)	R	S2	WE
55	STRIPED OR COMMON TIGER	Danaus genutia (Cramer)			
56	TAMIL CATSEYE	Zipaetis saitis (Hewitson)			WE
57	TAMIL YEOMAN	Cirrochroa thais (Fabricius)			
58	TAWNY COSTER	Acraea violae (Fabricius)			
59	PLAIN TIGER	Danaus chrysippus (Linnaeus)			
<i></i>	WHITEBAR BUSHBROWN	Mycalesis anaxias (Hewitson)			
60 61	YELLOW PANSY	Junonia hierta (Fabricius)			
01		<u> Pirridae (Whites and Yellows)</u>			
62	INDIAN CABBAGE WHITE	Pieris canidia (Sparrman)			
63	COMMON ALBATROSS	Appias albina (Boisduval)		S2	
64	COMMON EMIGRANT	Catopsilia pomona (Fabricius)			
65	COMMON GRASS YELLOW	Eurema hecabe (Linnaeus)			
66	COMMON GULL	Cepora nerissa (Fabricius)			
67	COMMON JEZEBEL	Delias eucharis (Drury)			
68	COMMON WANDERER	Pareronia valeria (Carmer)			
69	LESSER ALBATROSS	Appias wardi (Moore)	R	S2	WE
70	GREAT ORANGE TIP	Hebomoia glaucippe (Linnaeus)			
71	MOTTLED EMIGRANT	Catopsilia pyranthe (Linnaeus)			
72	ONE-SPOT GRASS YELLOW	Eurema andersonii (Moore)			
73	PAINTED SAWTOOTH	Prioneris sita (C. and R.Felder)	R	S4	
74	PSYCHE	Leptosia nina (Fabricius)			
75	SMALL GRASS YELLOW	Eurema brigitta (Cramer)			
76	SPOTLESS GRASS YELLOW	Eurema laeta (Boisduval)			
77	THREE-SPOT GRASS YELLOW	Eurema hlanda (Boisduval)			
78	YELLOW ORANGE TIP	Ixias pyrene (Linnaeus)			
		<u>Lycanidae (Blues)</u>			
79	APEFLY	Spalgis epius (Westwood)			

80	COMMON ACACIA BLUE	Surendra quercetorum		
81	COMMON CERULEAN	Jamides celeno (Cramer)		
82	COMMON HEDGE BLUE	Acytolepis puspa (Horsfield)		
83	COMMON IMPERIAL	Cheritra freja (Fabricius)		
84	COMMON PIERROT	Castalius rosimon (Fabricius)		
85	COMMON SILVERLINE	Spindasis vulcanus (Fabricius)		
86	DARK CERULEAN	Jamides bochus (Stoll)		
87	DARK GRASS BLUE	Zizeeria karsandra (Moore)		
88	DARK PIERROT	Tarucus ananda (de Niceville)		S4
89	FORGET-ME-NOT	Catochrysops strabo (Fabricius)		
90	GRAM BLUE	Euchrysops cnejus (Fabricius)		
91	GRASS JEWEL	Freyeria trochylus (Freyer)		
92	INDIAN CUPID	Everes lacturnus (Godart)		
93	LESSER GRASS BLUE	Zizina otis (Fabricius)		
94	LIME BLUE	Chilades lajus (Stoll)		
95	LONG-BANDED SILVERLINE	Spindasis lohita (Horsfield)		S2
96	MALAYAN	Magisba malaya (Horsfield)		
97	MONKEY PUZZLE	Rathinda amor (Fabricius)		
98	Line blue sp	Nacaduba sp.		
99	PEA BLUE	Lampides boeticus (Linnaeus)		S2
100	PLUM JUDY	Abisara echerius (Stoll)		
101	INDIAN RED FLASH	Rapala iarbus (Fabricius)		
102	RED PIERROT	Talicada nyseus (Guerin-Meneville)		WE
103	SHIVA'S SUNBEAM	Curetis siva (Evans)	R	
104	SLATE FLASH	Rapala manea (Hewitson)		
105	TINY GRASS BLUE	Zizula hylax (Fabricius)		
106	YAMFLY	Loxura atymnus (Stoll)		
		<u>Hesperiidae (Skippers)</u>		
07	BUSH HOPPER	Ampittia dioscorides (Fabricius)		
108	CHESTNUT BOB	Iambrix salsala (Moore)		
109	COMMON BANDED AWL	Hasora chromus (Cramer)		
110	COMMON BANDED DEMON	Notocrypta paralysos (Wood-Mason and de Niceville)		
111	INDIAN/COMMON DARTLET	Oriens goloides (Moore)		
112	COMMON REDEYE	Matapa aria (Moore)		
113	COMMON SMALL FLAT	Sarangesa dasahara (Moore)		
114	COMMON/CEYLON SNOW FLAT	Tagiades jepetus (Stoll)		

115	COMMON SPOTTED FLAT	Celaenorrhinus leucocera (Kollar)	
116	COON	Sancus fuligo (Marbille)	
117	FULVOUS PIED FLAT	Psuedocoladenia dan (Fabricius)	
118	GRASS DEMON	Udaspes folus (Cramer)	
119	INDIAN PALM BOB	Suastus gremius (Fabricius)	
120	INDIAN GRIZZLED/INDIAN SKIPPER	Spialia galba (Fabricius)	
121	DARK PALM DART	Telicota ancilla (Herrich-Schaffer)	
122 123	Unknown Dart PYGMY GRASS-/SCRUB- HOPPER	Potanthus sp. Aeromachus pygmaeus (Fabricius)	WE
124	RESTRICTED DEMON	Notocrypta curvifascia (C. R. Felder)	
125	RICE SWIFT	Borbo cinnara (Wallace)	
126	DARK SMALL-BRANDED SWIFT	Pelopidas mathias (Fabricius)	
127	BROWN AWL	Badamia exclamationis (Fabricius)	
128	TAMIL GRASS DART	Taractrocera ceramas (Hewitson)	

S1-Scheduled I, Wildlife Protection Act 1972, S2-Scheduled II WPA 1972, S4- Scheduled IV WPA 1972, R- Rare, WE- Westerm Ghat Endemic

Si NO	Family	Scientific Name	Common Name	Native Place	Risk Level
1	Asteraceae	Ageratina adenophore	Crofton Weed	Central America	Medium Risk
2	Asteraceae	Ageratum conyzoides	Goat Weed	Central America	Low Risk
3	Amaranthaceae	Alternantnera hrasiliana	Red calico Plant	Latin America	Low Risk
4	Amaranthaceae	Amaranthus spinosus	Prickly amaranthus	Central America	Low Risk
5	Iridacea	Aristea ecklonii	Blue Star	Africa	No risk
6	Asclepiadaceae	Asclipias curassavica	Blood flower	Tropical America	No risk
7	Asteraceae	Bidens sulphurea	Sulphus cosmos	North America and Africa	No risk
8	Solanaceae	Brugmansia arborea	White angel trumpet	South America	Medium Risk
9	Solanaceae	Brugmansia Suaveolens	Angel's Trumpet	Tropical and Subtropical America	No risk
10	Apocynaceae	Catharanthus roseus	Periwinkle	Madagascar	No risk
11	Asteraceae	Centratherum intermedium	Brazilian Button Flower	South America	No risk
12	Asteraceae	Chromolaena odorata	Siam weed	Tropical America	High Risk
13	Melanostomaceae	Clidemia hirta	Koster's curse	Tropical and Central America	Low Risk
14	Verbenaceae	Duranta erecta	Duranta curse	South America	No risk

15	Acanthaceae	Hypoestes sanguinolenta	Measles plant	Madagascar	Medium Risk
16	Lamiacea	Hyptis suavelolens	Pignut	Tropical America	Medium Risk
17	Convolvulaceae	Ipomea cairica	Railway creeper	Tropical Africa and Asia	High Risk
18	Verbenaceae	Lantana camara	Lantana	Central and South America	High Risk
19	Mimosaceae	Leucaena leucocephala	Lead tree	Tropical America	Low Risk
20	Onagraceae	Ludwigia peruviana	Prim rose tree	North America	Risk
21	Rhamnaceae	Maesopsis eminii	Umbrella tree	West and Central Africa	Diale
22	Convolvulaceae	Merremia vitifolia	Grape leaf wood rose	Indo Maleshya and China	High Risk
23	Asteraceae	Mikania micrantha	Mile-a-minute	South America	High Risk
24	Mimosaceae	Mimosa diplotricha	Giant sensitive plant	Tropical America	High Risk
25	Mimosaceae	Mimosa pudica	Touch-Me-Not	South America	Low Risk
26	Asteraceae	Parthenium	Congress grass	North and South America	Medium
27	Poaceae	hysterophorus Pennisetum pedicellutum	Kyasuwa grass	Africa and Asia	Risk Medium Pick
28	Poaceae	Pennisetum polystachyon	Mission grass	Tropical Africa	High Risk
29	Solanaceae	Physalis anguląta	Sunberry	Tropical Africa, Asia, Australia	No Risk
30	Dennstaedticeae	Pteridium aquilinum	Broken fern	Tropical America	High Risk
31	Combretaceae	Quisqualis indica	Burma creeper	Mynamar	High Risk
32	Ceasalpiniaceae	Senna occidentalis	Coffee senna	South America	Low Risk
33	Ceasalpiniaceae	Senna tora	Sickle senna	South America	Risk
34	Asteraceae	Sphagneticola trilobata	Singapore Daisy	Tropical America	High Risk
35	Asteraceae	Tithonia diversiflora	Mexican sunflower	Mexico and Central America	Medium Risk
36	Asteraceae		Coat button	Tropical America	No risk
		procumpens			

3.3. Bio pesticides and Fertilizer

Bio pesticide property of *Chromolaena odorata, Lantana camara,* plants were already identified. Industrial base production of bio pesticide from these plants may decrease its invasion and provide job to the communities depend on this.

It was reported that the compost of Mikania gives better yields in the paddy fields of Mizoram (Sankaran *et al.*, 2010). Small scale industries could take up such initiatives. Hence removal of invasive weeds for the production of such products can lead to biodiversity conservation and also enhance economy.

3.4. Management

The diversity of butterflies for particular habitats is associated with the availability of larval host plants and adult nectar plants (Shihan and Kabir, 2015). Increase in nectar plant and decline in larval host plants may adversely affect butterfly population.

According to Rejmanek, 2003, three management objectives were suggested to weed

control; they are prevention/ exclusion, early detection, rapid assessment and control/ eradiation. No assessment in the percentage cover of invasive plants was done in the area. Knowledge about the status and range of invasive plant species would help in better management plants. Proper and systematic scientific studies would bring out effective ways to control invasive plants.

Use of Lantana as fencing and ornamental flower in garden should be discouraged. Lantana plants should not be planted in and around the crop fields (Gantavet et al., 2014). Clearing lands with invasive plants, continual follow-up treatment to

remove roots and seedlings would be effective way to control invasive plants (Gantayet et al., 2014)

ACKNOWLEDGEMENT

We are greatfully to Dr. George Chandy (Director in charge, Centre for Wildlife Studies, CVandAS, Pookode, Wayanad) for the encouragement and Dr. Kalesh Sadasivan (Trivandrum Natural History and Society) for identifying complex species.

Gram blue feeding nectar from Pea Blue feeding necatar from Sphagneticola trilobata

Dark Blue Tiger feeds nectar from C. odorata

Sphagneticola trilobata

Common Bluebottle feeding nec tar from L. camara

Dark Pierrot feeding nectar from Mikania micrantha

Rustic feeding nectar from M. micrantha

Malabar Rose feeding nectar from Lantana camara

REFERENCES

- Agren, G.I. and T. Fagerstrom, (1980). Increased or decreased separation of flowering time? The joint effect of competition for space and pollination in plants. *Oikos.* **35**:161-164.
- Alm, J., E. Thomas, Ohnmeiss, Janet Lanza, Lauren Vriesenga, (1990). Preference of cabbage white butterflies and honey bees for nectar that contains amino acids. *Oecologia*. 84(1). 53-57pp.
- Armbruster, W.S., and A.L. Herzig, (1984). Partitioning and sharing of pollinators by four sympatric species of Dalechampia (Euphorbiaceae) in Panama. *Ann. Missouri Botanical Garden*. **71**:1-16.
- Baker, H.G. and I. Baker, (1983). Floral nectar sugar constituents in relation to pollinator type. In: Jones CE, Little RJ (eds.). Handbook of Experimental Pollination Biology. Scientific and Academic Editions. New York. 117-141.
- Bhatt, Y.D., Y.S. Rawat and S.P. Singh, (1994). Changes in ecosystem functioning after replacement of forest by Lantana shrubland in Kumaon Himalaya. *J. Veg. Sci.* **5**: 67-70.
- Braithwaite, R.W., W.M. Lonsdale, and J.A. Estbergs, (1989). Alien vegetation and native biota in tropical Australia: the impact of *Mimosa pigra*. *Biol. Cons.* **48**: 189–210.
- Brown, Beverly, J., Mitchell, J. Randall and S.A. Graham, (2002). Competition for pollination between an invasive species (Purple Loosestrife) and a Native Congener. *Department of Biol.* 26p.
- Crawley, M.J. (1997). *Plant-herbivore dynamics. Plant Ecol.* Crawley MF, Eds. Malden (MA): Blackwell Science. 401-474.
- D'Antonio, C.M., N.E. Jackson, C.C. Horvitz and R. Hedberg, (2004). Invasive plants in wildland ecosystems: merging the study of invasion processes with management needs. *Frontiers in Ecology and the Environment* **10**(2): 513-521.
- D'Antonio, C.M. and P.M. Vitousek, (1992). Biological invasion by exotic grasses, the grass/fire cycle and global change. *Ann. Rev. Ecol. Systemat.* **23**: 63–87.
- Day, M.D, Wiley C.J, Playford, J. and Zalucki, M.P. 2003. Lantana: current management status and future prospects. (Australian Centre for International Agricultural Research: Canberra).

- Delph, L.F. (1986). Factors regulating fruit and seed production in the desert annual *Lesquerella gordonii*. *Oecologia*. **69**:471-476.
- Duggin, J.A. and C.B. Gentle (1998). Experimental evidence on the importance of disturbance intensity for invasion of *Lantana camara* in dry rain forest open forest ecotones in north-east NSW, Australia. *Forest Ecol. Manag.* **109**:279-292.
- Enserink, M. (1999). Biological invaders sweep in. *Sci.* **285**: 1834–1836.
- Feltwell, J. (1986). *The Natural History of Butterflies*. Groom Helem Ltd., Provident House, Bureel Row, Beckenham Kent BR3 1AT, 133pp.
- Free, J.B. (1968). The flower constancy of bumblebees. *J. Ani. Ecol.* **39**: 395-402.
- Galetto, G. Land Bernardello, (2003). Nectar sugar composition in angiosperms from Chaco and Patagonia (Argentina): an animal visitor's matter? *Pl. Systemat. Evol.* **238**: 69-86.
- Gentle, C.B. and J.A. Duggin. (1998). Interference of *Choricarpia leptopetala* by *Lantana camara* with nutrient enrichment in mesic forests on the Central Coast of NSW. *Pl. Ecol.* **136**: 205-211.
- George, M.A. (2011). Handbook on the Butterlies of Nilgiri Biosphere. *KFRI Research Report*. 218p
- Grace, J.B. and R.G. Wetzel. (1981). Habitat partitioning and competitive displacement in cattails (Typha): experimental field studies. *Am. Natur.* **118**: 463-474.
- Grace, J.B., and R.G. Wetzel, (1982). Niche differentiation between two rhizomatous plant species: *Typha latifolia* and *Typha angustifolia*. *Canad. J. Bot.* **60**: 46-57.
- Grigulis, K., A.W. Sheppard, J.E. Ash and R.H. Groves, (2001). The comparative demography of the pasture weed *Echium plantagineum*between its native and invaded ranges. *J. Appl. Ecol.* **38**: 281–290.
- Groves, H. and J.J. Burdon, (1986). *Ecology of biological invasions*. Cambridge University Press, Cambridge, UK.
- Hegde, R., S. Suryaprakash, L. Achoth and K.S. Bawa. (1996). Extraction of non-timber forest products in the forests of the Biligiri Rangan Hills, India. Contribution to rural incomes. *Econ. Bot.* **50**: 243-251.

- Hiremath, A.J., and B. Sundaram, (2005). The Fire-Lantana Cycle Hypothesis in Indian Forests. *Conservat. Soc.* **3**: 26-42
- Holloran, P., A. Mackenzie, S. Farrell and D. Johnson, (2004). *The Weed Workers' Handbook*. Berkeley (CA): The Watershed Project and California Invasive Plant Council. 128 p.
- Huenneke, L.F, and J.K. Thomson, (1995). Potential interference between a threatened endemic thistle and an invasive nonnative plant. *Cons. Biol.* **9**: 416-425.
- Keane, R.M. and M.J. Crawley (2002). Exotic plant invasions and the enemy release hypothesis. *Trends in Ecol. Evol.* **17**(4):164-170.
- Kehimkar, I. (2008). The book of Indian butterflies. Bombay Natural History Society. Oxford University Press. 497pp.
- Kumbhar, B.A. and G.R. Patel, (2013). Phototoxic effect of lantana on hypocotyls and radical growth of some crop of pattern. *Int. J. Integrated Inn. Tech.* **2**(6): 8-11.
- Kunte, K. (2000). *Butterflies of Peninsular India*. Indian Academy of Sciences (Bangalore) and Universities Press (Hyderabad), 254pp
- Louda, S.M., R.W. Pemberton, M.T. Johnson and P.A. Follett, (2003). Non-target effects: the Achilles heel of biological control? *Ann. Rev. Entomol.* **48**: 365–396.
- Lowe, S., M. Browne, S. Boudjelas and M. De Poorter, (2004). Hundred of the World's Worst Invasive Alien Species: A Selection from the Global Invasive Species Database. Invasive Species Specialist Group of the IUCN-World Conservation Union.
- Mack, R.N., D. Simberloff, W.M. Lonsdale, H. Evans, M. Clout and F.A. Bazzaz, (2000). Biotic invasions: Causes, epidemiology, global consequences, and control. *Ecol. Appl.* **10**: 689-710.
- Marcel Rejmánek, (2000). Invasive plants: approaches and predictions. *Austral Ecol.* **25**: 497–506
- Memmott, J., S.V. Simon, Q. Paynter, A.W. Sheppard and P. Syrett, (2000). The invertebrate fauna on broom, *Cystus scoparius*, in two native and two exotic habitats. *Acta Oecologia*. **21**: 213–222.
- Mishra, A. (2013). Inhibitory effects of aqueous leaf extracts of *Lantana camara* on the growth of *P*.

hysterophorous in fruiting stage. *Asian J. Exp. Sci.* **27**(2): 43-45

- Mishra, A. (2014). Phytotoxic effect of *Lantana camara* leaf extract on germination and growth of *Pisum sativum. Bot.* **4**(5): 55-56.
- Nimbalkar, R.K., S.K. Chandekar and S.P. Khunte, (2011). Butterfly diversity in relation to nectar food plants from Bhor Tahsil, Pune District, Maharashtra, India. *J. Threat. Taxa* 3(3): 1601-1609.
- Newsome, A. E., and I.R. Noble, (1986). Ecological and physiological characters of invading species. 1-21.
- Gantayet, P.K., S.P. Adhikary, K.C. Lenka and B. Padhy, (2014). Allelopathic Impact of Lantana Camara on Vegetative Growth and Yield Components of Green Gram (*Phaseolus radiatus*) Int. J. Curr. Microbiol. App. Sci. **3**(7): 327-335.
- Pollard, E. (1977). A method for assessing changes in the abundance of butterflies. *Biol. Conserv.* **12**: 115–134
- Radosevich, S., J. Holt and C. Ghersa, (1997). Weed Ecology: Implications for Management. Second edition. New York: John Wiley and Sons, Inc. 589 p.
- Ramesh Chander Kuhad, Rishi Gupta, Yogender Pal Khasa and Ajay Singh, (2010). Bioethanol production from *Lantana camara* (red sage): Pretreatment, saccharification and fermentation. **101**(21): 8348-8354.
- Rawat, Y.S., Y.D. Bhatt, P. Pande and S.P. Singh, (1994). Production and nutrient cycling in *Arundinaria falcate* and *Lantana camara*. The two converted ecosystems in Central Himalaya. *Trop. Ecol.* 35: 53-67.
- Rice, E.L., (1984). *In: Allelopathy.* Second edition (Ed. E.L.Rice). Academic press. lando, Floride Pp: 422
- Ridenour, W.M. and R.M. Callaway, (2001). The relative importance of allelopathy in interference: the effects of an invasive weed on a native bunchgrass. *Oecologia*, **126**: 444–450.
- Rodriguez L.F., (2006). Can Invasive Species Facilitate Native Species? Evidence of How, When, and Why These Impacts Occur. *Biol. Inv.* 8(4).pp 927-939

- Sankaran, K.V., T.A. Suresh and T.V. Sajeev, (2010). Indhyayile pradhana adhinivesa sasyangal: Jeevasastravum Niyanthranavum. Kerala Forest and Research Institute. 67P.
- Sharma, O.M., P. Sharma, S. Pattabhi, V. Mahato, B.S. Sharma, (2007). A Review of the Hepatotoxic Plant *Lantana camara. Crit. Rev. Toxicol.* **37**(4): 313 352.
- Shihan, T.R. and N. Kabir, (2015). Butterfly diversity in relation to *Chromolaena odorata* (L.) King and H.E. Robins as a nectar plant from two selected regions of Bangladesh. *J. Entomol. Zool. Stud.* **3**(3): 258-264.
- Tilman, D., C.L. Lehman and K.T. Thomas, (1997). Plant diversity and ecosystem productivity: Theoretical considerations. *Proc. Nat. Acad. Sci.* **94**: 1857-1861.
- Venner, M. (2006). Control of Invasive Species: A Synthesis of Highway Practice. National

CooperativeHighwayResearchProgramSynthesis363.Washington(DC):TransportationResearchBoard.116 p

- Wardle, D.A., K.S. Nicholson, M. Ahmed and A. Rahman, (1994). Interference effects of the invasive plant *Carduus nutans* L. against the nitrogen fixation ability of *Trifolium repens* L. *Pl. Soil* 163: 287-297.
- Waser, N.M., (1978a). Competition for hummingbird pollination and sequential flowering in two Colorado wildflowers. *Ecol.* **59**: 934-944.
- Weihe, P.E. and R.K. Neely, (1997). The effects of shading on competition between purple loosestrife and broadleaved cattail. *Aqu. Bot.* 59: 127-138.
- Wynter-Blyth, M.A. (1957). *Butterflies of Indian Region*. Bombay Natural History Society, Bombay, 523pp.