PHYTOSOCIOLOGICAL ANALYSIS AND FLORISTRIC DIVERSITY OF VANEESWARAM KAVU IN KANNUR DISTRICT, KERALA

Jeeshna, M.V.

Department of Botany, Sree Narayana College, Thottada, Kannur, Kerala - 670 007. E.mail: mvjeeshna@gmail.com

ABSTRACT

Sacred groves act as a treasure house for rare and medicinal plants. Apart from the quantitative analysis quantitative approach to sacred grove gives the potential species and importance of sacred grove, which is the main focuses of this work. There are many sacred groves are present at Kannur district in which Vaneeswaram Kavu is one of the important one. The flora of sacred groves of has analysed taxonomically and phytosociologically. A total of 64 vascular plants falling under 61 genera and 43 families were documented. About 12 species are reported in the red listed category. In phytosociological studies species like, *Elaeocarpus serratus, Erycibe paniculata* and *Scleria lithosperma* were showing higher IVI. The devastation of species diversity in the study area represent there is an urgent need for regeneration of the species for conservation of biodiversity.

Keywords: Sacred grove, phytosociology, biodiversity, regeneration.

1. INTRODUCTION

The groves are small patches of vegetation types that were traditionally protected and managed by the local communities, through a wide range of management practices (Gadgil and Vartak, 1976). Sacred grooves have existed from time immemorial as patches of densely wooded areas with unique flora and fauna and perennial water sources in their vicinity. These sacred grooves are considered valuable gene pool and the first major effort to recognize and conserve biodiversity. In many parts of India, sacred grooves symbolize surviving examples of climax vegetation and are disappearing with modernization. As an ecosystem, they help in soil and water conservation, preserves the biological wealth, treasure house of rare and endangered animal species abode of many medicinal, endemic, endangered an economically important plants. Sacred grooves are important ecological centres to study the potential vegetation and source to gather indigenous knowledge on local plants, animals, habitat preferences, distribution, life histories and demographic features. Cultural practices and folk beliefs related to sacred groves imply conservation measures of ecosystems and labelled ethno forestry (Pandev 1998).

In Kerala, based on ownership patterns, sacred groves (Kavu in the regional language, Malayalam) can be broadly categorised into three groups namely those managed by individual families, group of families and the statutory bodies for temple management (Devaswom Board). The present study of sacred grove, Vaneeswaram Kavu, Kannur district, Kerala focuses on analyzing floristic composition, medicinal properties and red listed species in the selected area.

2. MATERIALS AND METHODS

2.1. Study area

The study area, Vaneeswaram Kavu (Fig.1) is concentrated in Kannur district, which is located in the northern part of Kerala. The sacred grove is located in Morazha central, which is about 14 kilometers long from Kannur town. The temple lies between 11.987' N latitude and 75.349'E longitude. Here, the climate is very hot and humid with minimum and maximum temperature ranging from 27°C to 31°C. The average annual rainfall is 3614 mm. The study area of sacred grove spread out in one and half acres. Here the worship is "Nagam" (snake).

Fig. 1. Vanneswaram Kavu, Morazha, Kannur district.

2.2. Floristic survey

Field surveys were carried out to know their exact location, extent, presiding deity etc. Whenever any sacred groves visited the neighbouring people and temple worshippers were interviewed to confirm the above facts and also to elicit information about the presence other groves in the vicinity. The extent each grove was ascertained by discussion with local people and latter confirmed with temple records. Plants are identified with the help of Madras Presidencv (Gamble, 1915-1936), Flora of Cannanore (Ramachandran and Nair, 1988) and also by using available field keys and taxonomic bulletins. The identification was further confirmed with the help of taxonomic experts in Botany.

2.3. Phytosociological analysis

The minimum quadrat size of 1 x 1 was fixed by the species- area curved method of phytosociological observations. Each time 20 quadrats were laid by the randomized method in each site. The minimum number of quadrat required (ie. 20) was determined as described by Greig – Smith (1974).

The number and type of each species occurring in each quadrat were recorded. For grasses, each tiller was counted as an individual because it is impossible to decide from aerial shoots whether it is separated or connected in the subterranean region, especially in perennial grasses. Different workers have used arbitrary units to represent individual. Armstrong (1907) and Stapledon (1913) have counted the entire individuals as far as possible in the case of erect plants, but in creeping grasses each grasses each rooting units has taken as an individual. Stove and Fryer (1935) have considered an independent root system, as nearly as this could be determined without actually lifting the plant, to be a unit for counting. In the case of creeping plants, any portion of the plant upto 5 cm in length and having functional root was counted as one plant. Only the plants beyond seedling stage (ie. more than 2 cm height in case of monocots and beyond first leaf stage in dicots) were counted. The basal areas at the point of emergence for the constituent species were measured. From the observations, the quantitative characters such as frequency, density, abundance, relative frequency, relative density, relative dominance, importance value index and relative value of importance were calculated (Shukla and Chandel, 1982; Misra, 1980).

Frequency, density and abundance were calculated using the following formulae:

Basal area = Πr^2

(Π = 3.14 and 'r' is the radius of the stem at the point of emergence.)

Relative frequency, relative density and relative dominance were calculated from the following formulae:

Relative Frequency =	Number of occurence of the species	- X 100				
	Number of occurence of all species					
Relative density =	Number of individuals of the species	X 100				
	Number of individuals of all species					
Relative dominance =	Total basal area of the species	X 100				
	Total basal area of all species					
IVI = RD+RF+RDo						

RIVI=IVI/3

2.4. Ethnobotanical studies and phytosociological analysis

During the field visits, the various uses of plants were gathered. 65 species were recorded by adopting Quadrat method of sampling. The biodiversity induces like frequency, density, abundance, basal cover and important value index and their synthetic attributes like relative frequency, relative density, relative dominance, and relative value of importance were calculated.

3. RESULTS AND DISCUSSION

Among the 64 species available 93 % plant possessed medicinal uses. It indicates the potentiality of two study areas for the inhabitation of medicinal plants. It may be explained that the sacred groves are rich collection of conserved medicinal plants (Vinothkumar *et al.*, 2011). The uses of species for diverse medicinal purposes show the production of different kinds of secondary metabolites with rich varieties of bioactive compounds in the study sites.

There are 12 endangered species in the study area (Table 2). According to Bhagwat (2005) sacred groves are the last home of some endangered species and also are known to represent the only existing climax vegetation communities in Northeastern India.

Table 1. Species composition of Vanneswaram kavu, Morazha, Kannur.

			Quantitativ	e attributes		Synthetic attributes				
S.No	Species	Frequen	Abunuance	Density	Dasai	R.F	R.D	R.Do		
		cv (%)	(individual	(individ	Cover	(%)	(%)	(%)	IVI	RIVI
			s/m ²⁾	uals/m²)	(mm²/m)					
1	Abrus precatorius L.	25	2.0000	0.5	3.2245	3.0120	1.3495	0.0573	4.4188	1.4729
2	Abrus pulchllus Wall.	5	2.0000	0.1	0.6449	0.6024	0.2699	0.0115	0.8838	0.2946
3	Acacia auriculiformis A.Cunn. ex Benth	5	1.0000	0.05	20.6369	0.6024	0.1350	0.3665	1.1039	0.3680
4	Achyranthus aspera Linn.	5	3.0000	0.15	2.3408	0.6024	0.4049	0.0416	1.0488	0.3496
5	<i>Acroceras munroanum</i> (Balansa) Henrard	15	9.3333	1.4	58.9650	1.8072	3.7787	1.0473	6.6332	2.2111
6	Adenanthera pavonina L.	10	5.0000	0.5	107.6433	1.2048	1.3495	1.9118	4.4662	1.4887
7	<i>Adiantum lunulatum</i> Burm. f.	10	2.0000	0.2	1.0191	1.2048	0.5398	0.0181	1.7627	0.5876
8	<i>Aglaia elaeagnoidea</i> (A.Juss.) Benth.	10	1.5000	0.15	1.1943	1.2048	0.4049	0.0212	1.6309	0.5436
9	Anodendron paniculatum A. DC.	5	1.0000	0.05	4.6019	0.6024	0.1350	0.0817	0.8191	0.2730
10	Antidesma menasu MuellArg.	5	3.0000	0.15	468.2006	0.6024	0.4049	8.3157	9.3229	3.1076
11	<i>Apocopis mangalorensis</i> (Hochst. ex Steud.) Henrard	10	16.0000	1.6	5.8904	1.2048	4.3185	0.1046	5.6279	1.8760
12	Aporosa lindleyana (Wt.) Bail.	35	2.4286	0.85	87.7070	4.2169	2.2942	1.5578	8.0688	2.6896
13	Arundinella leptochloa (Steud.) Hook.f	5	6.0000	0.3	120.4061	0.6024	0.8097	2.1385	3.5506	1.1835
14	Axonopus compressus (Sw.) P.Beauv.	5	7.0000	0.35	9.0287	0.6024	0.9447	0.1604	1.7074	0.5691
15	Calycopteris floribunda(Roxb.) Lam	15	3.0000	0.45	165.6688	1.8072	1.2146	2.9424	5.9642	1.9881
16	Carallia brachiata (Lour.) Merr.	15	2.3333	0.35	56.4291	1.8072	0.9447	1.0022	3.7541	1.2514
17	Caryota urens L.	35	3.4286	1.2	238.8535	4.2169	3.2389	4.2423	11.6980	3.8993
18	Chassalia curviflora (Wallich)	10	1.0000	0.1	4.5860	1.2048	0.2699	0.0815	1.5562	0.5187
19	<i>Curculigo orchioides</i> Gaetrn.	5	3.0000	0.15	13.8057	0.6024	0.4049	0.2452	1.2525	0.4175
20	<i>Digitaria bicornis</i> (Lam.) Roem. and Schult.	10	5.0000	0.5	66.9188	1.2048	1.3495	1.1885	3.7429	1.2476
21	Diploclisia glaucescens (Blume) Diels.	5	1.0000	0.05	1.9268	0.6024	0.1350	0.0342	0.7716	0.2572
22	Dendrophthoe falcata (L.f)	10	1.0000	0.1	1.3455	1.2048	0.2699	0.0239	1.4986	0.4995
23	Drynaria quercifolia (Linn.) J. Smith.	5	6.0000	0.3	193.4713	0.6024	0.8097	3.4362	4.8483	1.6161
24	Elaeocarpus serratus Linn.	5	2.0000	0.1	1411.1545	0.6024	0.2699	25.0634	25.9357	8.6452
25	Erycibe paniculata Roxb.	10	2.0000	0.2	9.1720	1.2048	0.5398	0.1629	1.9075	0.6358
26	Gomphia serrata (Gaertn.) Korth.	20	4.5000	0.9	34.6815	2.4096	2.4291	0.6160	5.4548	1.8183
27	Holigarna arnottiana J.Hk.	5	1.0000	0.05	74.7174	0.6024	0.1350	1.3270	2.0644	0.6881
28	Hugonia mystax Linn.	5	2.0000	0.1	31.6003	0.6024	0.2699	0.5612	1.4336	0.4779
29	Isachne miliacea Roth	20	3.7500	0.75	0.5374	2.4096	2.0243	0.0095	4.4435	1.4812

30	Ischaemum indicum (Houtt.)	20	20.5000	4.1	1.3057	2.4096	11.0661	0.0232	13.4990	4.4997
31	Ischaemum timorense Kunth	10	6.0000	0.6	0.1911	1.2048	1.6194	0.0034	2.8276	0.9425
32	Ixora brachiata Roxb.	5	2.0000	0.1	3.1847	0.6024	0.2699	0.0566	0.9289	0.3096
33	Ixora coccinea L	20	2.7500	0.55	19.3113	2.4096	1.4845	0.3430	4.2371	1.4124
34	Jasminum flexile Vahl.	10	2.0000	0.2	1.0191	1.2048	0.5398	0.0181	1.7627	0.5876
35	Jasminum malabaricum Wight	10	1.0000	0.1	7.1656	1.2048	0.2699	0.1273	1.6020	0.5340
36	Kyllinga nemoralis L.	5	5.0000	0.25	25.7962	0.6024	0.6748	0.4582	1.7353	0.5784
37	Leea indica (Burm.f.) Merr.	15	2.0000	0.3	27.6115	1.8072	0.8097	0.4904	3.1073	1.0358
38	Lepidagathis incurve D.Don	5	2.0000	0.1	4.5860	0.6024	0.2699	0.0815	0.9538	0.3179
39	Lepisanthes tetraphylla (Vahl) Radlk	10	1.5000	0.15	4.7771	1.2048	0.4049	0.0848	1.6945	0.5648
40	Lindsaea ensifolia Sw.	10	1.0000	0.1	1.1465	1.2048	0.2699	0.0204	1.4951	0.4984
41	<i>Macaranga peltata</i> Roxb. Mueller	5	1.0000	0.05	14.3312	0.6024	0.1350	0.2545	0.9919	0.3306
42	Mangifera indica L.	5	1.0000	0.05	57.3248	0.6024	0.1350	1.0181	1.7555	0.5852
43	Melicope lunu-ankenda (Gaertn.)	10	1.0000	0.1	29.6258	1.2048	0.2699	0.5262	2.0009	0.6670
44	Memecylon talbotianum Burm.f.	20	3.2500	0.65	67.0701	2.4096	1.7544	1.1912	5.3552	1.7851
45	Mimosa pudica Linn.	10	5.0000	0.5	4.8169	1.2048	1.3495	0.0856	2.6399	0.8800
46	Olea dioica Roxb.	30	2.0000	0.6	61.9108	3.6145	1.6194	1.0996	6.3335	2.1112
47	Piper trioicum L.	5	4.0000	0.2	1.9268	0.6024	0.5398	0.0342	1.1764	0.3921
48	Pothos scandens L.	25	1.8000	0.45	6.0549	3.0120	1.2146	0.1075	4.3342	1.4447
10	Pseuderanthemum latifolium (Vahl)B.	F	2 0000	0.1	1 2110	0 6024	0 2600	0.0749	0.0471	02157
49	Hansen	5	2.0000	0.1	4.2110	0.0024	0.2099	0.0740	0.9471	0.3137
50	Rourea minor (Gaertn.) Aubl.	20	6.0000	1.2	50.5414	2.4096	3.2389	0.8977	6.5462	2.1821
51	Rungia pectinata (L.) Nees.	15	4.0000	0.6	37.4522	1.8072	1.6194	0.6652	4.0918	1.3639
52	Salacia fruticosa Wall.	10	2.0000	0.2	20.6369	1.2048	0.5398	0.3665	2.1112	0.7037
53	Santalum album L.	10	2.0000	0.2	321.0828	1.2048	0.5398	5.7027	7.4473	2.4824
54	Sarcostigma kleinii Wight and Arn.	5	4.0000	0.2	39.8089	0.6024	0.5398	0.7070	1.8493	0.6164
55	Scleria lithosperma (L.) Sw.	25	22.0000	5.5	343.3121	3.0120	14.8448	6.0975	23.9544	7.9848
56	Smilax zeylanica L.	35	1.7143	0.6	10.7484	4.2169	1.6194	0.1909	6.0272	2.0091
57	<i>Staurogyne glauca</i> Kuntze	15	3.3333	0.5	4.8169	1.8072	1.3495	0.0856	3.2423	1.0808
58	Stemodia verticillata (Mill.) Hassler	10	1.5000	0.15	7.4642	1.2048	0.4049	0.1326	1.7422	0.5807
59	Strychnos nux-vomica L	55	6.8182	3.75	659.5342	6.6265	10.1215	11.7139	28.4619	9.4873
60	Syzygium caryophyllatum (L.) Alston	5	2.0000	0.1	101.6640	0.6024	0.2699	1.8056	2.6780	0.8927
61	Uvaria narum Wall.	25	5.0000	1.25	238.9530	3.0120	3.3738	4.2440	10.6299	3.5433
62	Vanda roxburghii R. Br.	15	9.0000	1.35	189.6019	1.8072	3.6437	3.3675	8.8185	2.9395
63	Vitex altissima L.f.	20	2.2500	0.45	63.2006	2.4096	1.2146	1.1225	4.7467	1.5822
64	Wattakakka volubilis (L.f.) Stapf	5	2.0000	0.1	1.7914	0.6024	0.2699	0.0318	0.9041	0.3014

R.F-Relative Frequency, R.D- Relative Density, R.Do- Relative Dominance, IVI- Important Value Index, RIVI- Relative Important Value Index.

Table 2. Red listed plants in Vaneeswaram Kavu, Kerala.

Si No	Species	Status
1	<i>Aglaia elaeagnoidea</i> (A.Juss.) Benth.	Least concerned
2 3	Anodendron paniculatum A. DC. Arundinella leptochloa (Steud.) Hook.f	Endangered Least Concerned
4 5	<i>Curculigo orchioides</i> Gaetrn. Drynaria quercifolia (L.) J. Sm.	Endangered Endangered
6	Holigarna arnottiana J.Hk.	Least concerned
7	Ixora brachiata Roxb.	Least concerned
0	Jasminum malabaricum Wight	Endangered
8	Melicope lunu-ankenda (Gaertn.)	Endangered
9 10	Santalum album L.	Endangered
11	<i>Staurogyne glauca</i> Kuntze.	Endangered
12	Syzygium caryophyllatum (L.)	Endangered
14	Alston	-

Out of the 64 species in Vanneswaram Kavu Strychnos nux-vomica, Aporosa lindleyana, Caryota urens and Smilax zeylanica shows better frequency value. But Scleria lithosperma, Ischaemum indicum and Apocopis mangalorensis have distributed abundantly than the other constituent species. Highest density was observed in the species like Scleria lithosperma, Ischaemum indicum, Strychnos nux-vomica. Based on the basal cover, Elaeocarpus serratus was considered to be the dominant species and secured the basal cover of 1411 mm²/m. In this site species like Strychnos nux-vomica, Scleria lithosperma, Elaeocarpus serratus were registered highest Relative frequency, Relative density and Relative basal cover respectively. Of the various plant species available, Strychnos nux-vomica securing higher IVI of 28.46 (Table.1). According to Misra (1980) this may be attributed to their high reproductive capacity, quick dispersal of seeds and wind pollination to produce viable seeds. Their existence is also due to certain taboos, strong and supplemented mystic folklore (Gadgil and Vartak, 1975).

The present study envisages toreveal the potentiality for its richness of biodiversity and ecological status of the sacred grove. It is suggested that the studied sacred groves must be given conservation priority to protect valuable endangered medicinal species. Despite the seasonal changes, the anthropogenic were determined to be most influencing factor to affect the species composition and the quantitative ecological attributes of many sensitive species. Therefore construction activities, over grazing, collection of fire wood, tress passing, dumping of waste and many antisocial elements must be checked so as to protect the species in their habitats. Further, ecosystem- specific management plans must be developed to protect the individual species in these sacred groves. Protection of such activities aid in the regulation of ecological process like energy flow, food chain and food web and cycling of materials which would result in ecological balance and stability of ecosystem.

REFERENCES

- Armstrong, S.F. (1907). The botanical and chemical composition of herbage pastures and meadows. *J. Agr. Sci* **2**: 283-304.
- Bhagwat, S.A., C.G. Kushalappa, P.H. Williams and N.D. Brown (2005). A land scape approach to biodiversity conservation of sacred groves in the Western Ghats of India. *Conserv. Biol* **19**(6): 1853-1862.
- Gadgil, M. and V.D. Vartak, (1975). Sacred groves of India: a plea for continued conservation. *J. Bombay Nat. His. Soc* **72**: 314-320.
- Gadgil, M. and V.D. Vartak, (1975). Sacred groves of India-A plea for continued conservation. *J. Bombay Nat. Hist. Soc* **73**: 623- 647.
- Gamble, J.S. and C.E.C. Fischer, (1915-1935). Flora of presidency of Madras, Adlord and Sons Ltd, London.
- Grieg-Smith, P. (1974). Quantitative plant ecology 2nd (eds.), Butterworths, London.
- Misra, K.C. (1980). Manual of Plant Ecology, Oxford and IBH publishing co., New Delhi, Bombay and Calcutta. p. 457.
- Pandey, D.N. (1998). Ethnoforestry: local knowledge for sustainable forestry and livelihood security. Himanshu Publications. Udaipur, New Delhi.
- Ramachandran, V.S. and V.J. Nair (1988). Flora of Cannanore. pp.1-599.
- Shukla, R.S. and P.S. Chandel, (1982). A Text Book of Plant Ecology. S. Chand and Company. Limited, pp. 107-146.
- Stapledon, R.G. (1913). Pasture problems and drought resistance. *J. Agric. Sci* **5**: 129-151.
- Stove, W.C. and J.R.A. Fryer, (1935). A botanical study of pasture mixtures. *Sci. Agric* **15**: 777-805.
- Vinothkumar, D., S. Murugavelh and A. Kethsy Prabhavathy, (2011). Phytosociological and ethenobotanical studies of sacred groves in Pudukottai District, Tamil Nadu, India. *Asian J Exp. Biol. Sci* **2**(2): 306-315.