RESEARCH ARTICLE

TWO-OUT DEGREE EQUITABLE DOMINATION IN THE MIDDLE, CENTRAL AND THE LINE GRAPHS OF $\mathrm{P}_{\mathrm{N}}, \mathrm{C}_{\mathrm{N}}$ AND $\mathrm{K}_{1, \mathrm{~N}}$

Ameenal Bibi, K. and P. Rajakumari*

P.G. and Research Department of Mathematics, D.K.M.College for Women (Autonomous), Vellore - 632 001, Tamil Nadu, India.

Abstract

Let $G=(V, E)$ be a simple, finite, connected and undirected graph. A dominating set D of G is said to be two-out degree equitable dominating set if for any two vertices $u, v \in D$ such that $\left|\operatorname{od}_{D} u-\operatorname{od}_{D}(v)\right| \leq 2$, where $\operatorname{od}_{D} u=\mid N v \cap(V-D)$. The minimum cardinality of two -out degree equitable dominating set is called two- out degree equitable domination number and it is denoted by $\gamma_{2 \mathrm{oe}}(\mathrm{G})$. In this paper, we introduced the two-out degree equitable domination numbers in the middle, central and the line graphs of the path P_{n}, cycle C_{n} and star $\mathrm{K}_{1, \mathrm{n}}$ graphs.

Keywords: Two-out degree equitable domination number, Middle graph, Central graph, Line graph, Path P_{n}, Cycle C_{n} and Star graph $\mathrm{K}_{1, \mathrm{n}}$.

AMS Subject Classification: 05C9, 05C69, 05C70.

1. INTRODUCTION

The concept of domination was first studied by Ore and Berge (1962). A non-empty set $D \subseteq V$ is said to be a dominating set of G if every vertex in V-D is adjacent to atleast one vertex in D . The minimum cardinality of the minimal dominating set D is $=$ called the domination number and it is denoted by $\gamma(\mathrm{G})$.

An equitable domination has interesting application in the context of social network. In a network, nodes with nearly equal capacity may interact with each other in a better way. In society, persons with nearly equal status, tend to be friendly. Ali Sahal and V.Mathad (Sahal,2013) introduced the concept of two out degree equitable domination in graphs. In this paper, we investigated the two out degree equitable domination number in the middle and the central graphs of P_{n}, C_{n} and $K_{1, n}$ graphs.

Definition 1.1 (8)

The middle graph of a connected graph G denoted by $M(G)$ is the graph whose vertex set is V(G)UE(G) where two vertices are adjacent if
(i) They are adjacent edges of G (or)
(ii) One is a vertex of G and the other is an edge incident with it.

Definition 1.2 (8)

For a given graph $G=(V, E)$ of order n, the central graph $\mathrm{C}(\mathrm{G})$ is obtained, by subdividing each edge in E exactly once and joining all the non adjacent vertices of G . The central graph $\mathrm{C}(\mathrm{G})$ of a
graph G is an example of a split graph, where a split graph is a graph whose vertex set V can be partitioned into two sets, V1 and V2, where each pair of vertices in V1 are adjacent, and no two vertices in V2 are adjacent.

Definition 1.3 (7)

A dominating set D in a graph G is called a two-out degree equitable dominating set if for any two vertices $u, v \in D$ such that $\mid o d_{D} u-$
$\operatorname{od}_{D}(v) \mid \leq 2$, where $\operatorname{od}_{D} u=|N V \cap V-D|$. The minimum cardinality of a two-out degree equitable dominating set is called the two-out degree equitable domination number of G and is denoted by $\gamma_{20 e}(G)$.

In the consequent section, we obtained the two-out degree equitable domination number $\gamma_{2 o e}(G)$ of the middle graph of $\mathrm{P}_{\mathrm{n}}, \mathrm{C}_{\mathrm{n}}$ and $\mathrm{K}_{1, \mathrm{n}}$ graphs.

Definition 1.4 (9)

Line graph $L(G)$ of a graph G is defined with the vertex set $E(G)$, in which two vertices are adjacent if and only if the corresponding edges are adjacent in G.

2. Two-out degree Equitable domination in the Middle graphs of P_{n}, C_{n} and $K_{1, n}$.

Example 2.1

Let G be the middle graph as in the figure. We obtained the two-out degree equitable domination number.

[^0]

Middle graph of $\mathrm{P}_{5} \mathrm{M}\left(\mathrm{P}_{5}\right)$
Consider the set $\mathrm{D}=\left\{v_{1}, v_{3}\right\}$.It is a dominating set and $V-D=\left\{v_{2}, v_{4}, u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}$

$$
\begin{aligned}
& o_{D} v_{1}=\mid N v_{1} \cap\left\{v_{2}, v_{4}, u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right. \\
& =\left|\left\{u_{1}, u_{2}, v_{2}\right\} \cap\left\{v_{2}, v_{4}, u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}\right| \\
& =3 \\
& o d_{D}^{v}=\mid N v \cap\{\underset{3}{ }-D \mid \\
& =\mid\left\{u_{3}, u_{4}, v_{2}, v_{4}\right\} \cap\{ \\
& \left.v_{2}, v_{4}, u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\} \mid \\
& =4
\end{aligned}
$$

From the aboye, any two vertices $u, v \in D$

Therefore $\left\{v_{1}, v_{3}\right\}$ is the two-out degree equitable dominating set with the minimum cardinality is 2 . That is $\gamma_{2 o e} M\left(P_{5}\right)=2$.
Theorem2.2
For any Path $P_{n}, \gamma_{2_{o e}} M\left(P_{n}\right)=\left\lvert\, \frac{\lceil n-1\rceil}{2 \mid}\right.$ where $n \geq 5$.

Proof

Let $P_{n}: u_{1}, u_{2}, \ldots . u_{n+1}$ be the path of length n and $u_{i} u_{i+1}=v_{i}$, By the definition of middle graph, $M\left(P_{n}\right)$ has the vertex set $V P_{n} \cup E P_{n}=$ $u_{i} / 1 \leq i \leq n+1 \cup\left\{v_{i} / 1 \leq i \leq n\right\}$ in which each u_{i} is adjacent to v_{i} and v_{i} is adjacent to u_{i+1}. The vertices $u_{1}, v_{1}, v_{2} \ldots . v_{2 k}, v_{2 k-1}$ of $M\left(P_{n}\right)$ induces a path of length 4 k .

Let $\quad D=\left\{\left(v_{i+1}, v_{i+3} / i=1\right),\left(v_{i, i+2} / i=\right.\right.$), $\left.\left(v_{i-1}, v_{i+1}, v_{i+3} / i=3\right), \ldots.\right\}$ be a dominating set of $M\left(P_{n}\right)$ and

$$
\begin{aligned}
& V-D=\left\{\left(v_{i,} v_{i+2} / i=1\right),\left(v_{i-1}, v_{i+1}, v_{i+3} / i=\right.\right. \\
& \text { 2), } \left.\ldots \cup\left(u_{i} / 1 \leq i \leq n\right)\right\} . \\
& \text { Now } v_{i+1} \in D \text { then } \text { od }_{D} v_{i+1}=\mid N v_{i+1} \cap \\
& V-D \mid \text { for } i=1, \text { od }_{D} v_{2}=\left|N v_{2} \cap V-D\right| \\
& =\mid\left\{\left(v_{i}, v_{i+2}, u_{i+1}, u_{i+2} / i=\right.\right. \\
& \text { 1), } \left.\left(v_{i-1}, v_{i+1}, u_{i-1}, u_{i+1} / i=2\right), \ldots\right\} \cap\left\{\left(v_{i,} v_{i+2} / i=\right.\right. \\
& \text { 1), } \left.\left(v_{i-1}, v_{i+1}, v_{i+3} / i=2\right), \ldots \cup \quad\left(u_{i} / 1 \leq i \leq n\right)\right\} \mid
\end{aligned}
$$

$$
\begin{gathered}
\left|\left\{\left(v_{i}, v_{i+2}, u_{i+1}, u_{i+2}\right),\left(v_{i-1}, v_{i+1}, u_{i-1}, u_{i+1}\right), \ldots .\right\}\right| \\
=4
\end{gathered}
$$

Then $\left|\operatorname{od}_{D}\left(v_{i}\right)-\operatorname{od}_{D}\left(v_{i+1}\right)\right| \leq 2$, for any $v_{i} v_{i+1} \in D$. Therefore D is the minimum two-out degree equitable dominating set, Hence, $\gamma_{20 e} M\left(P_{n}\right)=\left.\right|^{\left\lceil\left.\frac{n-1\rceil}{2} \right\rvert\,\right.}$ where $n \geq 5$.
Theorem 2.3

| | For any Cycle | $\mathrm{C}_{\mathrm{n}}, \quad \gamma_{2 o e} M\left(C_{n}\right)=$ |
| :--- | :--- | :--- | :--- |
| $\left\lceil\frac{n}{3}\right\rangle^{2}+1$ | | |
| where $n \geq 4$. | | |

Proof

Let $V C_{n}=\left\{u_{1}, u_{2} \ldots u_{n}\right\}$ and $E C_{n}=$ $\left\{v_{1}, v_{2} \ldots v_{n}\right\} \quad$ Where $\quad v_{i}=u_{i} u_{i+1} 1 \leq i \leq n-1$, $v_{n}=u_{n} u_{1}$. By the definition of middle graph, $M\left(C_{n}\right)$ has the vertex set $V C_{n} \cup E C_{n}$ in which each v_{i} is adjacent to $v_{i+1}(i=1,2 \ldots . n-1)$ and v_{n} is adjacent to u_{1}. In $M\left(C_{n}\right),\left\{u_{1}, v_{1}, u_{2}, v_{2} \ldots . v_{n-1}, u_{1}\right\}$ induces a cycle of length 2 n . That is $\left|\begin{array}{lll}V & M & C_{n}\end{array}\right|=$ $2 n$ and $\left|E M C_{n}\right|=3 n$.

$$
\text { Let } D=\left\{\left(v_{i}, v_{i+2} / i=1\right),\left(v_{i-1}, v_{i+1}, v_{i+3} / i=\right.\right.
$$ 2), $\ldots\}$ be a dominating set of $M C_{n}$ and

$$
V-D=\left(v_{i+1}, v_{i+3} / i=1\right),\left(v_{i}, v_{i+2} / i=\right.
$$

2),.... $\cup\{u i / 1 \leq i \leq n\}$.

Now $v_{i} \in D$ then $\operatorname{od}_{D} v_{i}=\left|N v_{i} \cap V-D\right|$

$$
\text { for } i=1, \quad \text { od }_{D} v_{1}=\left|N v_{1} \cap V-D\right|
$$

$$
=\mid\left\{\left(v_{i+1}, v_{i+3}, u_{i}, u_{i+1} / i=1\right),\left(v_{i}, v_{i+3}, u_{i-1}, u_{i} / i=\right.\right.
$$

$$
\text { 2), } \ldots\} \cap\left(v_{i+1}, v_{i+3} / i=1\right),\left(v_{i}, v_{i+2} / i=2\right), \ldots . \cup
$$

$$
\left\{u_{i} / 1 \leq i \leq n\right\} \mid
$$

$=\mid\left\{\left(v_{i+1}, v_{i+3}, u_{i}, u_{i+1} / i=1\right),,\left(v_{i}, u_{i-1}, u_{i} / i=\right.\right.$ 2),\}|

$=3$ or 4 .

Then $\left|\operatorname{od}_{D}\left(v_{i}\right)-\operatorname{od}_{D}\left(v_{i+1}\right)\right| \leq 2$, for any $v_{i} v_{i+1} \in D$. Therefore D is the minimum two- out degree equitable dominating set. Hence, $\gamma_{2 o e} M\left(C_{n}\right)=|3| \quad$ where $n \geq 4$.

Theorem 2.4

For any Star graph $K_{1, n}, \gamma_{2 o e} M\left(K_{1, n}\right)=n$.

Proof

Let $V K_{1, n}=\left\{u, u_{1}, u_{2} \ldots u_{n}\right\} \quad$ and $E\left(K_{1, n}\right)=\left\{v_{1}, v_{2} \ldots . v_{n}\right\}$.By the definition of middle graph, we have $V M K_{1, n}=u \cup v_{i} / \leq i \leq n \cup$ $u_{i} / \leq i \leq n \quad$ in which the vertices $v_{1}, v_{2} \ldots . v_{n}, u$
induces clique of order $n+1$. Let $D=\left\{v_{i} / 1 \leq i \leq\right.$ $n\}$ be the dominating set of $M\left(K_{1, n}\right)$ and $V-D=$ $\left(u, u_{i}\right) / 1 \leq i \leq n$.

Now $v_{i} \in D$ then $\operatorname{od}_{D} v_{i}=\mid N v_{i} \cap V-$ $D \mid$ for $i=1, o d_{D} v_{1}=\left|N v_{1} \cap V-D\right|$

$$
\begin{aligned}
& =\mid v_{i+1}, \ldots v_{n} \cup \stackrel{\underline{u}}{\underline{l}} \leq n \cap \quad u, u_{i} \\
& \quad=\left|u, u_{i}\right| \text { since } i=1 \\
& \quad=2
\end{aligned}
$$

Then $\left|\operatorname{od}_{D}\left(v_{i}\right)-\operatorname{od}_{D}\left(v_{j}\right)\right| \leq 2$, for any $v_{i} v_{j} \in D$. Therefore D is the minimum two - out degree equitable dominating set, Hence, $\gamma_{2 o e} M\left(K_{1, n}\right)=n$.
3. Two-out degree Equitable domination in the Central graphs of $\boldsymbol{P}_{\boldsymbol{n}}, \boldsymbol{C}_{\boldsymbol{n}}$ and $K_{1, \boldsymbol{n}}$.

In this section, we obtained the two-out degree equitable domination number $\gamma_{2 o e}(G)$ of the central graphs of the path P_{n}, cycle C_{n} and the star graph $K_{1, n}$.

Example 3.1.

Let G be the central graph as in the figure. we obtained the two-out degree equitable domination number.

Central graph of $\boldsymbol{P}_{\mathbf{5}}$

Consider the set $D=\left\{v_{1}, u_{2}, u_{3}, u_{4}\right\}$.It is a dominating set and $V-D=\left\{v_{2}, v_{3}, v_{4}, v_{5}, u_{1}\right\}$

$$
\begin{aligned}
& \text { od }_{D} v_{1}=\left|N v_{1} \cap V-D\right| \\
& =\left|\left\{u_{1}, v_{3}, v_{4}, v_{5}\right\} \cap\left\{v_{2}, v_{3}, v_{4}, v_{5}, u_{1}\right\}\right| \\
& =4 \\
& \text { od }_{D} u_{2}=\left|N u_{2} \cap V-D\right| \\
& =2
\end{aligned}
$$

Similarly, $o d_{D} u_{3}=o d_{D} u_{4}=2$
From the above, any two vertices $u, v \in D$ are such that $\left|o d_{D} u-o d_{D}(v)\right| \leq 2$.

Therefore $\left\{v_{1}, u_{2}, u_{3}, u_{4}\right\}$ is the minimum two-out degree equitable dominating set with the minimum cardinality 4 . Hence, $\gamma_{2 o e} C\left(P_{5}\right)=4$.

Theorem 3.2.
For any Path $P_{n}, \quad \gamma_{2 o e} C\left(P_{n}\right)=n-$ 1 for $n \leq 5$.

Proof

Let P_{n} be the path of length $(n-1)$ with vertices $v_{1}, v_{2} \ldots . v_{n}$. By the definition of central graph, the non-adjacent vertices v_{i} and v_{j} of P_{n} are adjacent in $C P_{n}$.

Therefore,$V\left(C P_{n}=\left\{v_{i} / 1 \leq i \leq n\right\} \cup\right.$
$\left\{u_{i} / 1 \leq i \leq n-1\right.$ and

$$
E\left(C P_{n}=\left\{e / 1_{i} \leq i \leq n-1\right\} \cup\left\{e^{\prime} / 1 \leq\right.\right.
$$

$i \leq n-1\} \cup e_{i j}: 1 \leq i \leq n-2, i+2 \leq j \leq n$.
Let $\left\{v_{i}\right\} \cup\left\{u_{i} / 2 \leq i \leq n-1\right\}$ will be the dominating set.

$$
\begin{aligned}
& \text { Let } \\
& \left(v_{1}, u_{i+1}\right),\left(v_{1}, u_{i+1}\right),\left(v_{1}, u_{i-1}, u_{i}, u_{i+1}\right), \text { where } 1 \leq \\
& i \leq 3 \text { be the dominating set of } C P_{n} \text { and } \\
& V-D \\
& =u_{1}, v_{i+1}, v_{i+2}, u_{1}, v_{i}, v_{i+1}, v_{i+2}, u_{1}, v_{i-1}, v_{i}, v_{i+1}, v_{i+2}
\end{aligned}
$$ where $1 \leq i \leq 3$

Now $v_{1} \in D$ then $o d_{D} v_{1}=\left|N\left(v_{1}\right) \cap V-D\right|$
$=\mid\left(u_{1}, v_{i+2}\right),\left(u_{1}, v_{i+1}, v_{i+2}\right),\left(u_{1}, v_{i}, v_{i+1}, v_{i+2}\right)$
$\cap\left\{u_{1}, v_{i+1}, v_{i+2},\left(u_{1}, v_{i}, v_{i+1}, v_{i+2}\right),\left(u_{1}, v_{i-1}, v_{i}, v_{i+1}, v_{i+2}\right)\right\} \mid$

$$
\begin{gathered}
=\left|\left(u_{1}, v_{i+2}\right),\left(u_{1}, v_{i+1}, v_{i+2}\right),\left(u_{1}, v_{i}, v_{i+1}, v_{i+2}\right)\right| \\
=n-1
\end{gathered}
$$

Now $u_{i} \in D$ then $o d_{D} u_{i}=\left|N\left(u_{i}\right) \cap V-D\right|$

$$
=2
$$

Then $\left|\operatorname{od}_{D}\left(v_{1}\right)-\operatorname{od}_{D}\left(u_{i}\right)\right| \leq 2$, for any $v_{1}, u_{i} \in D$. Therefore D is the minimum two - out degree equitable dominating set. Hence, $\gamma_{2 o e} C\left(P_{n}\right)=n-1$ for $n \leq 5$.

Theorem 3.3.

For any Cycle $C_{n}, \quad \gamma_{2 o e} C\left(C_{n}\right)=n-$ 1 for $n \leq 5$.

Proof

Let C_{n} be any cycle of length n and let $V C_{n}=\left\{v_{1}, v_{2} \ldots v_{n}\right\}$ and $E C_{n}=e_{1}, e_{2} \ldots e_{n}$. By the definition of central graph $C\left(C_{n}\right)$ has the vertex set $V C_{n} \cup\left\{u_{i}: 1 \leq i \leq n\right\}$ where u_{i} is a vertex of subdivision of the edge $v_{i} v_{i+1}(1 \leq i \leq n-1)$ and u_{n} is a vertex of subdivision of the edge $v_{n} v_{1}$.

Let

$D=$
$\left(v_{1}, u_{i+1}\right),\left(v_{1}, u_{i}, u_{i+1}\right),\left(v_{1}, u_{i-1}, u_{i}, u_{i+1}\right)$, where $1 \leq$ $i \leq 3$ be a dominating set of $C C_{n}$ and $V-D=$ $\left(v_{i+1}, v_{i+2}, u_{i}, u_{i+2}\right),\left(v_{i}, v_{i+1}, v_{i+2}, u_{i-1}, u_{i+2}\right)\left(v_{i-1}, v_{i}, v_{i+1}, v_{i+2}, u_{i-2}, u_{i+2}\right)$, where $1 \leq i \leq 3$.

Now $\quad v_{1} \in D \quad$ then $\quad \operatorname{od}_{D} v_{1}=\left|N v_{1} \cap V-D\right|$
$=\left|\begin{array}{ll}\left(u_{i+2}\right),\left(u_{i-1}, u_{i+2}, v_{i+1}\right),\left(u_{i-2}, u_{i+2}, v_{i}, v_{i+1}\right) \\ (v, v, u, u),(v, v, v, u, u)(v, v, v, v, u, u)\end{array}\right|$

$=\left|\left(u_{i+2}\right),\left(u_{i-1}, u_{i+2}, v_{i+1}\right),\left(u_{i-2}, u_{i+2}, v_{i}, v_{i+1}\right)\right|$

$$
=n-2 \text { or } n-1
$$

Similarly, $o d_{D} u_{i}=o d_{D} u_{i+1}=2$
Then $\left|\operatorname{od}_{D}\left(v_{1}\right)-\operatorname{od}_{D}\left(u_{i+1}\right)\right| \leq 2$, for any $v_{1} u_{i} \in D$. Therefore D is the minimum two - out degree equitable dominating set. Hence, $\gamma_{2 o e} C\left(C_{n}\right)=n-1$ for $n \leq 5$.
Theorem 3.4.
For any Star graph $K_{1, n}, \gamma_{22 e} \quad C\left(K_{1,}\right)=2$.

Proof

Let
$V K_{1, n}=v, v_{1}, v_{2}, \ldots v_{n}$ where deg $v=n$. By the definition of central graph of $K_{1, n}$ we denote the vertices of subdivision by $v_{1}^{\prime}, v_{2}^{\prime}, \ldots p^{\prime}$. That is $v v_{i}$ is subdivided by $u_{i} 1 \leq i \leq n$.

Let $D=\left\{v, v_{1}\right\} \quad$ be the dominating set of $C\left(K_{1, n}\right)$ and $V-D=\left(v^{\prime}, v_{i+1}, \ldots v_{n}\right\}, 1 \leq i \leq n$

$$
\begin{aligned}
& \text { Now } v \in D \text { then } o d_{D} v=|N v \cap V-D| \\
& \left.=\mid\left\{v^{\prime}, v^{\prime}, \ldots v_{n}\right\} \cap\left(v^{\prime}, v \quad, \ldots v\right\}\right\} \\
& =\left|\left\{v_{1} v_{i}^{\prime}, v_{2}^{\prime}, \ldots v_{n}\right\}\right|=n
\end{aligned}
$$

Similarly, $o d_{D} v_{1}=n$
Then $\left|\operatorname{od}_{D}(v)-\operatorname{od}_{D}\left(v_{1}\right)\right| \leq 2$, for any $v, v_{1} \in D$. Therefore D is the minimum two - out degree equitable dominating set. Hence, $\gamma_{2 o e} C\left(K_{1, n}\right)=2$.

4. Two-out degree Equitable domination in the Line graphs of $P_{\boldsymbol{n}}, C_{\boldsymbol{n}}$, and $K_{1, \boldsymbol{n}}$.

In this section, we obtained the two-out degree equitable domination number $\gamma_{2 o e}(G)$ of the line graphs of the path P_{n}, cycle C_{n} and the star graph $K_{1, n}$.

Theorem 4.1.

For any Path $P_{n}, \gamma_{2 o e} L\left(P_{n}\right)=n-3$.

Proof

Let P_{n} has n vertices $\mathrm{n}-1$ edges. Let $V=\left\{v_{1}, v_{2}, \ldots . v_{n-1}\right\}$ be the vertices of $L\left(P_{n}\right)$ and let $E=\left\{u_{1}, u_{2}, \ldots . u_{n-2}\right\}$ be the edges of $L\left(P_{n}\right)$.

Since the degree of any vertex in $L\left(P_{n}\right)$ is 2 except the initial and terminal vertices.

Let us consider $D=\left\{v_{1} v_{2} \ldots . v_{n-3}\right\}$ be a dominating set of $L\left(P_{n}\right)$ and $V-D=\left\{v_{n-2}, v_{n-1}\right\}^{`}$

Now $v_{i} \in D$ then $\operatorname{od}_{D} v_{i}=\left|N v_{i} \cap V-D\right|$

$$
o d_{D} v_{i+1}=\left|N v_{i+1} \cap V-D\right|=0
$$

Similarly, $o d_{D} v_{n-3}=1$. Hence for every $v_{i}, v_{j} \in D$ then $\left|o d_{D} u-o d_{D}(v)\right| \leq 2$. So D is the minimum two-out degree equitable dominating set. Then $\gamma_{2 o e} L\left(P_{n}\right)=n-3$.

Theorem 4.2.

For any Cycle $C_{n}, \gamma_{2 o e} L\left(C_{n}\right)=n-2$.

Proof

Let $L\left(C_{n}\right)$ have n vertices and n edges in which each vertex is of degree 2 . That is each vertex dominates two vertices. Let $V=\left\{u_{1}, u_{2}, \ldots . u_{n}\right\}$ be the vertices of $L\left(C_{n}\right)$.

Let
us
consider
$D=\left\{u_{1}, u_{2} \ldots . u_{i-1}, u_{i+1}, \ldots u_{n}\right\}$ be the dominating set of $L\left(C_{n}\right)$ and $V-D=\left\{u_{i}, u_{i+1}\right\}$.
Now $\operatorname{od}_{D}\left(u_{j}\right)=0, j=1,2 \ldots i-2, i+3, \ldots n$
$\operatorname{od}_{D}\left(u_{i}\right)=1{\text { and } o d_{D}\left(u_{i+1}\right)=1}$
Then $\left|\operatorname{od}_{D}(u)_{i}-\mathbb{d}{ }_{D}(u)\right| \leq 2$
Then D is the minimum two out degree equitable dominating set

So $\gamma_{2 o e} L\left(C_{n}\right)=n-2$.
Note: The line graph of $\underset{n}{ }, L \underset{n}{ } \underset{n}{ }$ is $_{n}$ itself.
Theorem 4.3.
For any Star graph $K_{1, n}, \gamma_{2 o e} L\left(K_{1, n}\right)=$ 1 for $n \leq 3$.

Proof

Let $V=\left\{v, u_{1}, u_{2}, \ldots u_{n}\right\}$ be the vertices of $K_{1, n}$. Let $V=\left\{v, u_{1}, u_{2}, \ldots u_{n-1}\right\}$ be the vertices of $L K_{1, n}$. Let us consider $D=\{v\}$ be a dominating set of $L K_{1, n}$ and $V-D=u_{1}, u_{2}$.

Now $v \in D$ then $o d_{D} v=|N v \cap V-D|$

$$
=\left|u_{1}, u_{2} \cap\left(u_{1}, u_{2}\right)\right|=2
$$

Then $\left|o d_{D}(u)-o d_{D}(v)\right| \leq 2$, for any $u, v \in D$. Therefore D is the minimum two - out degree equitable dominating set. Hence, $\gamma_{2 o e} L\left(K_{1, n}\right)=1$ for $n \leq 3$.

5. CONCLUSION

In this paper, we introduced two-out degree equitable domination number in the middle, central and line graph of P_{n}, C_{n}, and $K_{1, n}$ graphs. We extend this study on some more special classes of graphs.

REFERENCES

1. Anitha,S. Arumugam, and Mustapha, (2011). Equitable Domination in Graphs. Discrete Math. Algorithm. Appl. 03: 311.
2. Berge, C. (1962). Theory of graph and its Applications, Methuen London.
3. Fred Buckley and Frank Harary, (1990). Introduction in Graphs.
4. Harray, F. (1969). Graph Theory, Addison-Wesly Reading MA.
5. Kulli.V.R. Theory of domination in graphs.
6. Kulli and Janakiram, (2000). The non-split domination number of a graphs. Indian J. Pure. Appl. Math. 31: 545-550.
7. Mahesh, M.S. and P. Namasivayam, (2014). Connected two-out degree equitable domination number in Different graphs. Int. J. Math. Arch. 5(1): 67-74.
8. Murugesan, N. and Deepa, S. Nair, (2013). (1,2) domination in middle and central graph of $\mathrm{P}_{\mathrm{n}}, \mathrm{C}_{\mathrm{n}}$, and $\mathrm{K}_{1, \mathrm{n}}$. Appl. Math. 3(4):144-151.
9. Murugesan, N. and Deepa, S. Nair, (2013). (1,2) domination in line graphs of P_{n}, C_{n}, and $K_{1, n}$. American J. Comput. Math. 3(3):162-167.
10. Ore, O. (1962). Theory of graphs, Amerarica, Math. Soc, Collog, Publications 38, Providence.
11. Sahal, A. and V. Mathad, (2013). Two-out degree equitable Domination in graphs. Transactions on Combinatorics, 2(3): 13-19.
12. Swaminathan, V. and K.M. Dharmalingam, (2011). Degree equitable domination on graphs. Kragujevac J. Math. 35: 191-197.
13. Teresa, W. Haynes, T. Stephen, T. Hedetniemi and Peter J. Slater, Fundamentals of Domination in Graphs.
14. Thilagavathi and J. Vernold Vivin, (2009). On Harmonious Colouring of Line graph of Central Graph of Paths. Appl. Math. Sci. 3(5): 205-214.

[^0]: *Correspondence: P. Rajakumari, P.G. and Research Department of Mathematics, D.K.M.College for Women (Autonomous), Vellore-

