RESEARCH ARTICLE

P_{4}-DECOMPOSITION OF LINE AND MIDDLE GRAPH OF SOME GRAPHS

Vanitha, R*., D. Vijayalakshmi and G. Mohanappriya
PG and Research Department of Mathematics, Kongunadu Arts and Science College, Coimbatore - 641 029, Tamil Nadu, India.

Abstract

A decomposition of a graph G is a collection of edge-disjoint subgraphs $G_{1}, G_{2}, \ldots G_{m}$ of G such that every edge of G belongs to exactly one $G_{i}, 1 \leq i \leq m . E(G)=E\left(G_{1}\right) \cup E\left(G_{2}\right) \cup \ldots . \cup E\left(G_{m}\right)$. If every graph $G_{i} i s$ a path then the decomposition is called a path decomposition. In this paper, we have discussed the $\mathrm{P}_{4}-$ decomposition of line and middle graph of Wheel graph, Sunlet graph, Helm graph. The edge connected planar graph of cardinality divisible by 3 admits a P_{4}-decomposition.

Keywords: Decomposition, P_{4}-decomposition, Line graph, Middle graph.
Mathematics Subject Classification: 05C70

1. INTRODUCTION AND PRELIMINARIES

Let $G=(V, E)$ be a simple graph without loops or multiple edges. A path is a walk where $\mathrm{v}_{\mathrm{i}} \neq$ $\mathrm{v}_{\mathrm{j}}, \forall \mathrm{i} \neq \mathrm{j}$. In other words, a path is a walk that visits each vertex at most once. A decomposition of a graph G is a collection of edge-disjoint subgraphs $G_{1}, G_{2}, \ldots G_{m}$ of G such that every edge of G belongs to exactly one $\mathrm{G}_{\mathrm{i}}, 1 \leq \mathrm{i} \leq \mathrm{m} . \mathrm{E}(\mathrm{G})=\mathrm{E}\left(\mathrm{G}_{1}\right) \cup \mathrm{E}\left(\mathrm{G}_{2}\right) \cup \ldots . \mathrm{U}$ $\mathrm{E}\left(\mathrm{G}_{\mathrm{m}}\right)$. If every graph G_{i} is a path then the decomposition is called a path decomposition.

Heinrich, Liu and Yu (8) proved that a connected 4-regular graph admits a P_{4} decomosition if and only if $|E(G)| \equiv 0(\bmod 3)$ by characterizing graphs of maximum degree 4 that admit a trianglefree Eulerian tour. Haggkvist and Johansson (5) proved that every maximal planar graph with atleast 4 vertices has a P_{4}-decomposition. C. Sunil Kumar (12) proved that a complete r-partite graph is P_{4}-decomposable if and only if its size is a multiple of 3 . The name line graph comes from a paper by Harary \& Norman (1960) although both Whitney (1932) and Krausz (1943) used the construction before this (9). The concept of middle graph was introduced by T. Hamada and I. Yoshimura (6) in 1974.
Definition 1.1. (10) A cycle graph is a graph that consists of a single cycle, or in other words, some number of vertices connected in a closed chain.

Definition 1.2. (10) A wheel graph is a graph formed by connecting a single vertex to all vertices of a cycle. A wheel graph with n vertices can also be defined as the 1 -skeleton of an ($n-1$)-gonal pyramid.

Definition 1.3. (2) The -sunlet graph is the graph on vertices obtained by attaching pendant edges to a cycle graph.

Definition 1.4. (1) TheHelm graphis obtained from a wheel by attaching a pendant edge at each vertex of the -cycle.

Definition 1.5. (7) Let G be a graph, its Line graph $L(G)$, is defined with the vertex set $E(G)$, in which two vertices are adjacent if and only if the corresponding edges are adjacent in G.

Definition 1.6. (1) The Middle graph of G, denoted by $M(G)$, is defined with the vertex set $V(G) E(G)$, in which two elements are adjacent if and only if either both are adjacent edges in G or one of the elements is a vertex and the other one is an edge incident to the vertex in G.

Theorem 1.1. (12) C_{n} is P_{4}-decomposable if and only if $\mathrm{n} \equiv 0(\bmod 3)$.

Theorem 1.2. (12) K_{n} is P_{4}-decomposableif and only if $n \equiv 0(\bmod 3)$ or $n \equiv 1(\bmod 3)$.

P_{4}-DECOMPOSITION OF LINE GRAPHS

P_{4}-Decomposition of Line graph of Wheel graph
Let G be the wheel graph W_{n}. In $L\left(W_{n}\right)$, there are 2 n number of vertices and $\frac{n(n+5)}{2}$ number of edges. Its maximum degree is $n+1$ and minimum degree is 4.

Theorem 2.1.The graph $L\left(W_{n}\right)$ is P_{4} decomposable if and only if $n \equiv 0(\bmod 3)$ or $\quad n \equiv$ 1 (mod3).

Proof: By definition of $\mathrm{L}\left(\mathrm{W}_{\mathrm{n}}\right)$, let $e_{i}, 1 \leq \mathrm{i} \leq \operatorname{nand} s_{i}$, $1 \leq \mathrm{i} \leq$ nbe the vertices of W_{n} joining the vertices

[^0]corresponding to the edges $v_{i} v_{i+1} \& v_{n} v_{1}(1 \leq \mathrm{i} \leq \mathrm{n}-1)$ and $v v_{i}(1 \leq \mathrm{i} \leq \mathrm{n})$ respectively.

```
E(L}(\mathbf{W}\mathbf{n}))={\mp@subsup{e}{i}{}\mp@subsup{e}{i+1}{}/1\leq\textrm{i}\leq\textrm{n}-1}\cup{\mp@subsup{e}{n}{}\mp@subsup{e}{1}{}}\cup{\mp@subsup{e}{i}{}\mp@subsup{S}{i}{}/1\leq\textrm{i
sn}\cup
{e}\mp@subsup{e}{i}{}\mp@subsup{S}{i+1}{}/1\leq\textrm{i}\leq\textrm{n}-1}\cup{\mp@subsup{e}{n}{}\mp@subsup{s}{1}{}}\cup{\mp@subsup{s}{i}{}\mp@subsup{S}{j}{}/1\leq\textrm{i}\leq\textrm{n}-1,2\leq\textrm{j
<n,i\not=j}
```


Case I : For $n \equiv 0(\bmod 3), n>3$

Fig.2.1. P_{4}-decomposition of $\mathrm{L}\left(\mathrm{W}_{6}\right)$.
$<s_{i}>\cong \mathrm{K}_{\mathrm{n}}, \mathrm{n} \equiv 0(\bmod 3)$
$<s_{i} e_{i} e_{i+1} S_{i+2}>\cong(\mathrm{n}-2) \mathrm{P}_{4}, 1 \leq \mathrm{i} \leq \mathrm{n}-2$
$\left.<s_{n-1} e_{n-1} e_{n} s_{1}\right\rangle \cong \mathrm{P}_{4}$
$<S_{n} e_{n} e_{1} S_{2}>\cong \mathrm{P}_{4}$
Hence $E\left(L\left(W_{n}\right)\right)=E\left(K_{n}\right) \cup E\left((n-2) P_{4}\right) \cup E\left(P_{4}\right) \cup$ $\mathrm{E}\left(\mathrm{P}_{4}\right)$.

Thus $\mathrm{L}\left(\mathrm{W}_{\mathrm{n}}\right)$ is P_{4}-decomposable.

Case II: For $n \equiv 1(\bmod 3)$

Fig.2.2. P_{4}-decomposition of $\mathrm{L}\left(\mathrm{W}_{4}\right)$.

$$
\begin{aligned}
& <s_{i}>\cong \mathrm{K}_{\mathrm{n}}, \mathrm{n} \equiv 1(\bmod 3) \\
& <s_{i} e_{i} e_{i+1} s_{i+2}>\cong(\mathrm{n}-2) \mathrm{P}_{4}, 1 \leq \mathrm{i} \leq \mathrm{n}-2 \\
& <s_{n-1} e_{n-1} e_{n} s_{1}>\cong \mathrm{P}_{4} \\
& <s_{n} e_{n} e_{1} s_{2}>\cong \mathrm{P}_{4}
\end{aligned}
$$

Hence $E\left(L\left(W_{n}\right)\right)=E\left(K_{n}\right) \cup E\left((n-2) P_{4}\right) \cup E\left(P_{4}\right) \cup$ $\mathrm{E}\left(\mathrm{P}_{4}\right)$.

Thus $\mathrm{L}\left(\mathrm{W}_{\mathrm{n}}\right)$ is P_{4}-decomposable.
Conversely, suppose that $L\left(W_{n}\right)$ is $\mathrm{P}_{4^{-}}$

Then $\left|E\left(L\left(W_{n}\right)\right)\right| \equiv 0(\bmod 3)$ which implies that $\frac{n-5+5}{2} \equiv 0(\bmod 3)$ and thus $\mathrm{n} \equiv 0(\bmod$ $3)$ or $n \equiv 1(\bmod 3)$.

P_{4}-Decomposition of Line graph of Sunlet graph

Let G be the sunlet graph S_{n}. In $L\left(S_{n}\right)$, there are 2 n number of vertices and 3 n number of edges. Its maximum degree is 4 and minimum degree is 2 .
Theorem 2.2. The graph $L\left(S_{n}\right)$ is P_{4}-decomposable for all values of n.

Proof: By definition of $\mathrm{L}\left(\mathrm{S}_{\mathrm{n}}\right)$, let $f_{i}, 1 \leq \mathrm{i} \leq$ nand $e_{i}, 1$ $\leq \mathrm{i} \leq \mathrm{n}$ be the vertices of S_{n} joining the vertices corresponding to the edges $v_{i} u_{i}(1 \leq \mathrm{i} \leq \mathrm{n})$ and $v_{i} v_{i+1} \& v_{n} v_{1}(1 \leq \mathrm{i} \leq \mathrm{n}-1)$ respectively.
$\mathbf{E}\left(\mathbf{L}\left(\mathbf{S}_{\mathrm{n}}\right) \mathbf{)}=\left\{e_{i} e_{i+1} / 1 \leq \mathrm{i} \leq \mathrm{n}-1\right\} \cup\left\{e_{n} e_{1}\right\} \cup\left\{e_{i} f_{i} / 1 \leq \mathrm{i} \leq\right.\right.$ $\mathrm{n}\} \cup$

$$
\left\{e_{i} f_{i+1} / 1 \leq \mathrm{i} \leq \mathrm{n}-1\right\} \cup\left\{e_{n} f_{1}\right\}
$$

Fig.2.3. P_{4}-decomposition of $L\left(S_{4}\right)$.
$\left\langle e_{i} f_{i+1} e_{i+1} e_{i+2}\right\rangle \cong(\mathrm{n}-2) \mathrm{P}_{4}, 1 \leq \mathrm{i} \leq \mathrm{n}-2$
$<e_{n-1} f_{n} e_{n} e_{1}>\cong \mathrm{P}_{4}$
$<e_{n} f_{1} e_{1} e_{2}>\cong \mathrm{P}_{4}$
Hence $E\left(L\left(S_{n}\right)\right)=E\left((n-2) P_{4}\right) \cup E\left(P_{4}\right) \cup E\left(P_{4}\right)$.
Thus $\mathrm{L}\left(\mathrm{S}_{\mathrm{n}}\right)$ is P_{4}-decomposable.
P_{4}-Decomposition of Line graph of Helm graph
Let G be the helm graph H_{n}. In $L\left(H_{n}\right)$, there $\underline{n(n+11)}$
are $3 n$ number of vertices and $\frac{2}{}$ number of edges. Its maximum degree is $n+2$ and minimum degree is 3 .
Theorem 2.3. The graph $\mathrm{L}\left(\mathrm{H}_{\mathrm{n}}\right)$ is P_{4}-decomposable if and only if $n \equiv 0(\bmod 3)$ or $n \equiv 1(\bmod 3)$.

Proof: By definition of $\mathrm{L}\left(\mathrm{H}_{\mathrm{n}}\right)$, let $f_{i}, 1 \leq \mathrm{i} \leq \mathrm{n} ; e_{i}, 1 \leq \mathrm{i}$ \leq nand $s_{i}, 1 \leq \mathrm{i} \leq \mathrm{n}$ be the vertices of H_{n} joining the vertices corresponding to the edges $v_{i} u_{i}(1 \leq \mathrm{i} \leq \mathrm{n})$ $; v_{i} v_{i+1} \& v_{n} v_{1}(1 \leq \mathrm{i} \leq \mathrm{n}-1)$ and $v v_{i}(1 \leq \mathrm{i} \leq \mathrm{n})$ respectively.
$\mathbf{E}\left(\mathbf{L}\left(\mathbf{H}_{\mathbf{n}}\right) \mathbf{)}=\left\{f_{i} S_{i} / 1 \leq \mathrm{i} \leq \mathrm{n}\right\} \cup\left\{f_{i} e_{i} / 1 \leq \mathrm{i} \leq \mathrm{n}\right\} \cup\left\{e_{i} f_{i+1} /\right.\right.$ $1 \leq \mathrm{i} \leq \mathrm{n}-1\} \cup$
$\left\{e_{n} f_{1}\right\} \cup\left\{s_{i} e_{i} / 1 \leq \mathrm{i} \leq \mathrm{n}\right\} \cup\left\{e_{i} s_{i+1} / 1 \leq \mathrm{i} \leq \mathrm{n}-\right.$ $1\} \cup\left\{e_{n} s_{1}\right\} \cup$
$\left\{e_{i} e_{i+1} / 1 \leq \mathrm{i} \leq \mathrm{n}-1\right\} \cup\left\{e_{n} e_{1}\right\} \cup\left\{s_{i} S_{j} / 1 \leq \mathrm{i} \leq\right.$ $\mathrm{n}-1,2 \leq \mathrm{j} \leq \mathrm{n}, \mathrm{i} \neq \mathrm{j}\}$

Case I: For $n \equiv \mathbf{1}(\bmod 3)$

Fig.2.4. P_{4}-decomposition of $\mathrm{L}\left(\mathrm{H}_{4}\right)$.

$$
\begin{aligned}
& <s_{i}>\cong \mathrm{K}_{\mathrm{n}}, \mathrm{n} \equiv 1(\bmod 3) \\
& <s_{i} f_{i} e_{i} f_{i+1}>\cong(\mathrm{n}-1) \mathrm{P}_{4}, 1 \leq \mathrm{i} \leq \mathrm{n}-1 \\
& <s_{n} f_{n} e_{n} f_{1}>\cong \mathrm{P}_{4} \\
& <s_{i} e_{i} e_{i+1} s_{i+2}>\cong(\mathrm{n}-2) \mathrm{P}_{4}, 1 \leq \mathrm{i} \leq \mathrm{n}-2 \\
& <s_{n-1} e_{n-1} e_{n} s_{1}>\cong \mathrm{P}_{4} \\
& <s_{n} e_{n} e_{1} s_{2}>\cong \mathrm{P}_{4}
\end{aligned}
$$

Hence $E\left(L\left(H_{n}\right)\right)=E\left(K_{n}\right) \cup E\left((n-1) P_{4}\right) \cup E\left(P_{4}\right) \cup E((n-$ 2) $\left.P_{4}\right) \cup E\left(P_{4}\right) \cup E\left(P_{4}\right)$.

Thus $\mathrm{L}\left(\mathrm{H}_{\mathrm{n}}\right)$ is P_{4}-decomposable.
Case II : For $\mathbf{n} \equiv \mathbf{0}(\bmod 3), \mathbf{n}>3$

Fig.2.5. P_{4}-decomposition of $\mathrm{L}\left(\mathrm{H}_{6}\right)$.

$$
\begin{aligned}
& <s_{i}>\cong \mathrm{K}_{\mathrm{n}}, \mathrm{n} \equiv 0(\bmod 3) \\
& <s_{i} f_{i} e_{i} f_{i+1}>\cong(\mathrm{n}-1) \mathrm{P}_{4}, 1 \leq \mathrm{i} \leq \mathrm{n}-1 \\
& <s_{n} f_{n} e_{n} f_{1}>\cong \mathrm{P}_{4} \\
& <s_{i} e_{i} e_{i+1} S_{i+2}>\cong(\mathrm{n}-2) \mathrm{P}_{4}, 1 \leq \mathrm{i} \leq \mathrm{n}-2 \\
& <s_{n-1} e_{n-1} e_{n} s_{1}>\cong \mathrm{P}_{4} \\
& <s_{n} e_{n} e_{1} S_{2}>\cong \mathrm{P}_{4}
\end{aligned}
$$

Hence $E\left(L\left(H_{n}\right)\right)=E\left(K_{n}\right) \cup E\left((n-1) P_{4}\right) \cup E\left(P_{4}\right) \cup$ $E\left((n-2) P_{4}\right) \cup E\left(P_{4}\right) \cup E\left(P_{4}\right)$.

Thus $\mathrm{L}\left(\mathrm{H}_{\mathrm{n}}\right)$ is P_{4}-decomposable.
Conversely, suppose that $L\left(H_{n}\right)$ is $P_{4}{ }^{-}$ decomposable.
Then $\left|\mathrm{E}\left(\mathrm{L}\left(\mathrm{H}_{\mathrm{n}}\right)\right)\right| \equiv 0(\bmod 3)$ which implies that $\frac{n n+11}{2} \equiv 0(\bmod 3)$ and thus $\mathrm{n} \equiv 0(\bmod 3)$ or $\mathrm{n} \equiv$ $1(\bmod 3)$.

MIDDLE GRAPH OF CYCLE RELATED GRAPHS

P_{4}-Decomposition of Middle graph of Wheel graph

Let G be the wheel graph W_{n}. In $M\left(W_{n}\right)$,
there are $3 n+1$ number of vertices and $\frac{n(n+13)}{2}$ number of edges. Its maximum degree is $n+3$ and minimum degree is 3 .
Theorem 3.1. The graph of $M\left(W_{n}\right)$ is $P_{4}-$ decomposable if and only if $n \equiv 0(\bmod 3)$ or $n \equiv$ $2(\bmod 3)$.
Proof: Let $V(G)=\{v, v, \underset{1}{v}, \ldots, v\}_{n}$ be the vertices of W. ${ }_{n}$
By definition of $\mathrm{M}\left(\mathrm{W}_{\mathrm{n}}\right)$, let $e_{i}, 1 \leq i \leq n$ and $s_{i}, 1 \leq i \leq n$ be the newly introduced vertices of W_{n} joining the vertices $v_{i} v_{i+1} \& v_{n} v_{1}(1 \leq \mathrm{i} \leq \mathrm{n}-1)$ and $v v_{i}(1 \leq \mathrm{i} \leq \mathrm{n})$ respectively.
$\mathbf{E}\left(\mathbf{M}\left(\mathbf{W}_{\mathbf{n}}\right) \mathbf{)}=\left\{v_{i} e_{i} / 1 \leq \mathrm{i} \leq \mathrm{n}\right\} \cup\left\{e_{i} V_{i+1} / 1 \leq \mathrm{i} \leq \mathrm{n}-1\right\} \cup\right.$ $\left\{e_{n} v_{1}\right\} \cup\left\{v_{i} S_{i} / 1 \leq \mathrm{i} \leq \mathrm{n}\right\} \cup$

$$
\left\{e_{i} e_{i+1} / 1 \leq \mathrm{i} \leq \mathrm{n}\right\} \cup\left\{e_{n} e_{1}\right\} \cup\left\{v s_{i} / 1 \leq \mathrm{i} \leq\right.
$$

$\mathrm{n}\} \cup\left\{s_{i} e_{i} / 1 \leq \mathrm{i} \leq \mathrm{n}\right\} \cup$
$\left\{e_{i} S_{i+1} / 1 \leq \mathrm{i} \leq \mathrm{n}-1\right\} \cup\left\{e_{n} s_{1}\right\} \cup\left\{s_{i} S_{j} / 1 \leq \mathrm{i}\right.$
$\leq \mathrm{n}-1,2 \leq \mathrm{j} \leq \mathrm{n}, \mathrm{i} \neq \mathrm{j}\}$

Case I : For $n \equiv 2(\bmod 3)$

Fig.3.1. P_{4}-decomposition of $M\left(W_{5}\right)$.

$$
\begin{aligned}
& <s_{i} v_{i} e_{i} v_{i+1}>\cong(\mathrm{n}-1) \mathrm{P}_{4}, 1 \leq \mathrm{i} \leq \mathrm{n}-1 \\
& <s_{n} v_{n} e_{n} v_{1}>\cong \mathrm{P}_{4} \\
& <v s_{i} e_{i} e_{i+1}>\cong(\mathrm{n}-1) \mathrm{P}_{4}, 1 \leq \mathrm{i} \leq \mathrm{n}-1 \\
& <v S_{n} e_{n} e_{1}>\cong \mathrm{P}_{4} \\
& <e_{i} S_{i+1} S_{i} S_{i+2}>\cong(\mathrm{n}-2) \mathrm{P}_{4}, 1 \leq \mathrm{i} \leq \mathrm{n}-2
\end{aligned}
$$

$$
\begin{aligned}
& <e_{n-1} S_{n} S_{n-1} S_{1}>\cong \mathrm{P}_{4} \\
& <e_{n} S_{1} S_{n} S_{2}>\cong \mathrm{P}_{4}
\end{aligned}
$$

$$
\text { Hence } E\left(M\left(W_{n}\right)\right)=E\left((n-1) P_{4}\right) \cup E\left(P_{4}\right) \cup E\left((n-1) P_{4}\right)
$$

$$
\cup \mathrm{E}\left(\mathrm{P}_{4}\right) \cup
$$

$$
E\left((n-2) P_{4}\right) \cup E\left(P_{4}\right) \cup E\left(P_{4}\right) .
$$

Thus $\mathrm{M}\left(\mathrm{W}_{\mathrm{n}}\right)$ is P_{4}-decomposable.

Case II : For $\mathbf{n} \equiv \mathbf{0}(\bmod 3)$

Fig.3.2. P_{4}-decomposition of $M\left(W_{6}\right)$.

$$
\begin{aligned}
& <s_{i}>\cong \mathrm{K}_{\mathrm{n}}, \mathrm{n} \equiv 0(\bmod 3) \\
& <s_{i} e_{i} e_{i+1} s_{i+2}>\cong(\mathrm{n}-2) \mathrm{P}_{4}, 1 \leq \mathrm{i} \leq \mathrm{n}-2 \\
& <s_{n-1} e_{n-1} e_{n} s_{1}>\cong \mathrm{P}_{4} \\
& <s_{n} e_{n} e_{1} s_{2}>\cong \mathrm{P}_{4} \\
& <s_{i} v_{i} e_{i} v_{i+1}>\cong \mathrm{P}_{4}, 1 \leq \mathrm{i} \leq \mathrm{n}-1 \& \mathrm{i}=\mathrm{i}+3 \\
& <v_{i} s_{i} v s_{i+1}>\cong \mathrm{P}_{4}, 3 \leq \mathrm{i} \leq \mathrm{n}-3 \& \mathrm{i}=\mathrm{i}+3 \\
& <v_{n} s_{n} v s_{1}>\cong \mathrm{P}_{4} \\
& <e_{i} v_{i} S_{i} v \cong \mathrm{P}_{4}, 2 \leq \mathrm{i} \leq \mathrm{n}-1 \& \mathrm{i}=\mathrm{i}+3 \\
& <e_{i} v_{i+1} e_{i+1} v_{i+2}>\cong \mathrm{P}_{4}, 2 \leq \mathrm{i} \leq \mathrm{n}-2 \& \mathrm{i}=\mathrm{i}+3 \\
& <e_{n-1} v_{n} e_{n} v_{1}>\cong \mathrm{P}_{4} \\
& \mathrm{Hence} \mathrm{E}\left(\mathrm{M}\left(\mathrm{~W}_{\mathrm{n}}\right)\right)=\mathrm{E}\left(\mathrm{~K}_{\mathrm{n}}\right) \cup \mathrm{E}\left((\mathrm{n}-2) \mathrm{P}_{4}\right) \cup \mathrm{E}\left(\mathrm{P}_{4}\right) \cup \\
& \mathrm{E}\left(\mathrm{P}_{4}\right) \cup \mathrm{E}\left(\mathrm{P}_{4}\right) \cup \\
& \mathrm{E}\left(\mathrm{P}_{4}\right) .
\end{aligned}
$$

Thus $\mathrm{M}\left(\mathrm{W}_{\mathrm{n}}\right)$ is P_{4}-decomposable.
Conversely, suppose that $\mathrm{M}\left(\mathrm{W}_{\mathrm{n}}\right)$ is $\mathrm{P}_{4^{-}}$ decomposable.
Then $\left|E\left(M\left(W_{n}\right)\right)\right| \equiv 0(\bmod 3)$ which implies that $\frac{n n+13}{2} \equiv 0(\bmod 3)$ and thus $\mathrm{n} \equiv 0(\bmod 3)$ or $\mathrm{n} \equiv$ $2(\bmod 3)$.

P_{4}-Decomposition of Middle graph of Sunlet graph

Let G be the sunlet graph S_{n}. In $M\left(S_{n}\right)$, there are 4 n number of vertices and 7 n number of edges. Its maximum degree is 6 and minimum degree is 1 .

Theorem 3.2. Thegraph $M\left(S_{n}\right)$ is P_{4}-decomposable if and only if $n \equiv 0(\bmod 3)$.
Proof: Let V(G) $=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ be the vertices of S_{n}. By definition of $\mathrm{M}\left(\mathrm{S}_{\mathrm{n}}\right)$, let $f_{i}, 1 \leq \mathrm{i}$ \leq nand $e_{i}, 1 \leq \mathrm{i} \leq$ nbe the newly introduced vertices of S_{n} joining the vertices $v_{i} u_{i}(1 \leq \mathrm{i} \leq \mathrm{n})$ and $v_{i} v_{i+1} \& v_{n} v_{1}(1 \leq \mathrm{i} \leq \mathrm{n}-1)$ respectively.
$\mathbf{E}\left(\mathbf{M}\left(\mathbf{S}_{\mathbf{n}}\right)\right)=\left\{v_{i} e_{i} / 1 \leq \mathrm{i} \leq \mathrm{n}\right\} \cup\left\{e_{i} v_{i+1} / 1 \leq \mathrm{i} \leq \mathrm{n}-1\right\} \cup$ $\left\{e_{n} v_{1}\right\} \cup\left\{u_{i} f_{i} / 1 \leq \mathrm{i} \leq \mathrm{n}\right\} \cup$
$\left\{f_{i} v_{i} / 1 \leq \mathrm{i} \leq \mathrm{n}\right\} \cup\left\{f_{i} e_{i} / 1 \leq \mathrm{i} \leq \mathrm{n}\right\} \cup\left\{e_{i} f_{i+1}\right.$ $/ 1 \leq \mathrm{i} \leq \mathrm{n}-1\} \cup$
$\left\{e_{n} f_{1}\right\} \cup\left\{e_{i} e_{i+1} / 1 \leq \mathrm{i} \leq \mathrm{n}-1\right\} \cup\left\{e_{n} e_{1}\right\}$

Fig.3.3. P_{4}-decomposition of $\mathrm{M}\left(\mathrm{S}_{3}\right)$.
$<u_{i} f_{i} e_{i} f_{i+1}>\cong(\mathrm{n}-1) \mathrm{P}_{4}, 1 \leq \mathrm{i} \leq \mathrm{n}$
$<u_{n} f_{n} e_{1} f_{1}>\cong \mathrm{P}_{4}$
$<f_{i} V_{i} e_{i} V_{i+1}>\cong(\mathrm{n}-1) \mathrm{P}_{4}, 1 \leq \mathrm{i} \leq \mathrm{n}$
$<f_{n} v_{n} e_{n} v_{1}>\cong \mathrm{P}_{4}$
$<e_{i}>\cong \mathrm{C}_{\mathrm{n}}, \mathrm{n} \equiv 0(\bmod 3)$
Hence $E\left(M\left(S_{n}\right)\right)=E\left((n-1) P_{4}\right) \cup E\left(P_{4}\right) \cup E\left((n-1) P_{4}\right) \cup$ $\mathrm{E}\left(\mathrm{P}_{4}\right) \cup \mathrm{E}\left(\mathrm{C}_{\mathrm{n}}\right)$.

ThusM $\left(\mathrm{S}_{\mathrm{n}}\right)$ is P_{4}-decomposable.
Conversely, suppose that $M\left(S_{n}\right)$ is $P_{4}{ }^{-}$ decomposable.
Then $\left|\mathrm{E}\left(\mathrm{M}\left(\mathrm{S}_{\mathrm{n}}\right)\right)\right| \equiv 0(\bmod 3)$ which implies that 7 n $\equiv 0(\bmod 3)$ and thusn $\equiv 0(\bmod 3)$.
P_{4}-Decomposition of Middle graph of Helm graph
Let G be the helm graph H_{n}. In $M\left(H_{n}\right)$, there
are $5 n+1$ number of vertices and $\frac{n(n+23)}{2}$ number of edges. Its maximum degree is $n+4$ and minimum degree is 1 .

Theorem 3.3. The graph $M\left(H_{n}\right)$ is P_{4}-decomposable if and only if $\mathrm{n} \equiv 0(\bmod 3)$ orn $\equiv 1(\bmod 3)$.

Proof: Let V(G) $=\left\{v, v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $\left\{u_{1}, u_{2}, \ldots ., u_{n}\right\}$ be the vertices of H_{n}.

By definition of $\mathrm{M}\left(\mathrm{H}_{\mathrm{n}}\right)$, let $f_{i}, 1 \leq \mathrm{i} \leq \mathrm{n} ; \quad e_{i}, 1$ $\leq i \leq n a n d s_{i}, 1 \leq \mathrm{i} \leq \mathrm{n}$ be the newly introduced vertices of H_{n} joining the vertices $v_{i} u_{i}(1 \leq \mathrm{i} \leq \mathrm{n})$ $; v_{i} v_{i+1} \& v_{n} v_{1}(1 \leq \mathrm{i} \leq \mathrm{n}-1)$ and $v v_{i}(1 \leq \mathrm{i} \leq \mathrm{n})$ respectively.
$\mathbf{E}\left(\mathbf{M}\left(\mathbf{H}_{\mathbf{n}}\right) \mathbf{)}=\left\{v_{i} e_{i} / 1 \leq \mathrm{i} \leq \mathrm{n}\right\} \cup\left\{e_{i} v_{i+1} / 1 \leq \mathrm{i} \leq \mathrm{n}-1\right\} \cup\right.$ $\left\{e_{n} v_{1}\right\} \cup\left\{u_{i} f_{i} / 1 \leq \mathrm{i} \leq \mathrm{n}\right\} \cup$
$\left\{f_{i} v_{i} / 1 \leq \mathrm{i} \leq \mathrm{n}\right\} \cup\left\{v_{i} S_{i} / 1 \leq \mathrm{i} \leq \mathrm{n}\right\} \cup\left\{v s_{i} / 1\right.$
$\leq \mathrm{i} \leq \mathrm{n}\} \cup\left\{f_{i} S_{i} / 1 \leq \mathrm{i} \leq \mathrm{n}\right\} \cup$
$\left\{f_{i} e_{i} / 1 \leq \mathrm{i} \leq \mathrm{n}\right\} \cup\left\{e_{i} f_{i+1} / 1 \leq \mathrm{i} \leq \mathrm{n}-1\right\} \cup$ $\left\{e_{n} f_{1}\right\} \cup\left\{e_{i} e_{i+1} / 1 \leq \mathrm{i} \leq \mathrm{n}-1\right\} \cup$
$\left\{e_{n} e_{1}\right\} \cup\left\{s_{i} e_{i} / 1 \leq \mathrm{i} \leq \mathrm{n}\right\} \cup\left\{e_{i} S_{i+1} / 1 \leq \mathrm{i} \leq \mathrm{n}-\right.$
$1\} \cup\left\{e_{n} s_{1}\right\} \cup$

$$
\left\{s_{i} S_{j} / 1 \leq \mathrm{i} \leq \mathrm{n}-1,2 \leq \mathrm{j} \leq \mathrm{n}, \mathrm{i} \neq \mathrm{j}\right\}
$$

Case I: For $\mathbf{n} \equiv \mathbf{0}(\bmod 3)$

Fig.3.4. P_{4}-decomposition of $\mathbf{M}\left(\mathrm{H}_{6}\right)$.

$$
\begin{aligned}
& <s_{i}>\cong \mathrm{K}_{\mathrm{n}}, \mathrm{n} \equiv 0(\bmod 3) \\
& <u_{i} f_{i} e_{i} s_{i}>\cong \mathrm{nP}_{4}, 1 \leq \mathrm{i} \leq \mathrm{n} \\
& <v s_{i} v_{i} f_{i}>\cong \mathrm{nP}_{4}, 1 \leq \mathrm{i} \leq \mathrm{n} \\
& <f_{1} s_{1} e_{n} v_{1}>\cong \mathrm{P}_{4} \\
& <f_{i} s_{i} e_{i-1} v_{i}>\cong(\mathrm{n}-1) \mathrm{P}_{4}, 2 \leq \mathrm{i} \leq \mathrm{n} \\
& <v_{1} e_{1} e_{n} f_{1}>\cong \mathrm{P}_{4}
\end{aligned}
$$

$<V_{i} e_{i} e_{i-1} f_{i}>\cong(\mathrm{n}-1) \mathrm{P}_{4}, 2 \leq \mathrm{i} \leq \mathrm{n}$
Hence $E\left(M\left(H_{n}\right)\right)=E\left(K_{n}\right) \cup E\left(n P_{4}\right) \cup E\left(n P_{4}\right) \cup E\left(P_{4}\right)$ $\cup E\left((n-1) P_{4}\right) \cup$

$$
E\left(P_{4}\right) \cup E\left((n-1) P_{4}\right) .
$$

Thus $\mathrm{M}\left(\mathrm{H}_{\mathrm{n}}\right)$ is P_{4}-decomposable.

Case II : For $n \equiv 1(\bmod 3)$

Fig.3.5. P_{4}-decomposition of $\mathrm{M}\left(\mathrm{H}_{4}\right)$.
$<s_{i}>\cong \mathrm{K}_{\mathrm{n}}, \mathrm{n} \equiv 1(\bmod 3)$
$<u_{i} f_{i} e_{i} S_{i}>\cong \mathrm{nP}_{4}, 1 \leq \mathrm{i} \leq \mathrm{n}$
$<v s_{i} v_{i} f_{i}>\cong \mathrm{nP}_{4}, 1 \leq \mathrm{i} \leq \mathrm{n}$
$<f_{1} s_{1} e_{n} v_{1}>\cong \mathrm{P}_{4}$
$<f_{i} S_{i} e_{i-1} V_{i}>\cong(\mathrm{n}-1) \mathrm{P}_{4}, 2 \leq \mathrm{i} \leq \mathrm{n}$
$<V_{1} e_{1} e_{n} f_{1}>\cong \mathrm{P}_{4}$
$<v_{i} e_{i} e_{i-1} f_{i}>\cong(\mathrm{n}-1) \mathrm{P}_{4}, 2 \leq \mathrm{i} \leq \mathrm{n}$
Hence $\mathrm{E}\left(\mathrm{M}\left(\mathrm{H}_{\mathrm{n}}\right)\right)=\mathrm{E}\left(\mathrm{K}_{\mathrm{n}}\right) \cup \mathrm{E}\left(\mathrm{nP}_{4}\right) \cup \mathrm{E}\left(\mathrm{nP}_{4}\right) \cup \mathrm{E}\left(\mathrm{P}_{4}\right)$ $\cup E\left((n-1) P_{4}\right) \cup$

$$
E\left(P_{4}\right) \cup E\left((n-1) P_{4}\right) .
$$

Thus $\mathrm{M}\left(\mathrm{H}_{n}\right)$ is P_{4}-decomposable.
Conversely, suppose that $M\left(H_{n}\right)$ is $P_{4}{ }^{-}$ decomposable.
Then $\left|\mathrm{E}\left(\mathrm{M}\left(\mathrm{H}_{\mathrm{n}}\right)\right)\right| \equiv 0(\bmod 3)$ which implies that $\frac{n n+23}{2} \equiv 0(\bmod 3)$ and thusn $\equiv 0(\bmod 3)$ or $n \equiv$ $1(\bmod 3)$.

4. CONCLUSION

In this paper, we have obtained the pattern for P_{4}-decomposition of line and middle graph of Wheel graph, Sunlet graph and Helm graph.

REFERENCES

1. Akbar Ali, M.M., S. Panayappan and J. Vernold Vivin (2010). Tulgeity of Line, Middle and Total Graph of Wheel Graph Famlies. Int. J. Math. Combin. 3: 98-107.
2. Anitha, R. and R.S. Lekshmi (2008). N-Sun Decompostion of Complete, Complete Bipartite and Some Harary Graphs. Int. J. Math. Sci. 2: 3338.
3. Bondy, J.A. and U.S.R. Murthy (2008). Graph Theory, Springer.
4. Chitra Devi, P. and J. Paulraj Joseph (2014). P4decomposition of Total Graphs, J. Discrete Math. Sci. Cryptography. 17(5,6): 473-498.
5. Haggkvist, R. and R. Johansson (2004). A note on edge-decompositions of planer graphs. Discrete Math. 283(1-3): 263-266.
6. Hamada, T. and I. Yoshimura. (1976). Traversability and Connectivity of the middle graph of a graph, Discrete Math. 14 :247-255.
7. Harary, F. (1972) 8. Line Graphs, Graph Theory, Massachusetts: Addison-Wesley. P. 71-83.
8. Heinrich, K., J. Liu and M. Yu (1999). P4decompositions of regular graphs, J. Graph Theory. 1(2): 135-143.
9. Hemminger, R.L. and L.W. Beincke (1978), Line Graphs and Line Digraphs, in L. W.Beineke, R. J. Wilson, Selected Topics in Graph Theory, Academic Press inc; p. 71-83.
10. Pemmaraju, S. and S. Skiena (2003). Cycles, Stars and Wheels, 6.2.4 in Computation Discrete Mathematics: Combinatorics and Graph Theory in Mathematica, Cambridge, England, Cambridge University Press. p. 248-249.
11.Shyu, T.W. (2010). Decomposition Of Complete graphs into paths and cycles. Ars Combinatorial. 97: 257-270.
11. Sunil Kumar, C. (2003). On P_{4}-decomposition of graphs, Taiwanese. J. Math. 7(4): 657-664.

[^0]: *Correspondence: Vanitha, R., PG and Research Department of Mathematics, Kongunadu Arts and Science College, Coimbatore 641 029, Tamil Nadu, India. E.mail: vanithaooty0@gmail.com

