RESEARCH ARTICLE

ON DYNAMIC COLORING OF WEB GRAPH

Aaresh, R.R., M. Venkatachalam* and T. Deepa

P.G. and Research Department of Mathematics, D.K.M College for Women (Autonomous), Vellore - 632 001, Tamil Nadu, India.

Abstract

Dynamic coloring of a graph G is a proper coloring. The chromatic number of a graph G is the minimum k such that G has a dynamic coloring with k colors. In this paper we investigate the dynamic chromatic number for the Central graph, Middle graph, Total graph and Line graph of Web graph W_{n} denoted by $C\left(W_{n}\right), M\left(W_{n}\right), T\left(W_{n}\right)$ and $L\left(W_{n}\right)$ respectively.

Keywords: Dynamic coloring, Web graph, Middle graph, Total graph, Central graph and Line graph.

1. INTRODUCTION

Throughout this paper all graphs are finite and simple. The dynamic chromatic number was first introduced by Montgomery (13). A dynamic coloring is defined as a proper coloring in which any multiple degree vertex is adjacent to more than one color class. A dynamic coloring is thus a map c from V to the set of colors such that

- If $u v \in E(G)$, then $c(u)=c(v)$, and
- For each vertex $v \in V(G),|c(N(v))| \geq \min \{2, d(v)\}$

The first condition characterizes proper colorings, the adjacency condition and second condition is double-adjacency condition. The dynamic chromatic number $\chi_{d}=\chi_{d}(G)$ is the minimum k for which G has a dynamic k-coloring. The dynamic chromatic number, $\chi_{d}(G)$, has been investigated in several papers, see, (1, 2, 3, 4, 5, 8, 13, 14). In 2001 Montgomery (13) conjectured that for a regular graph $G, \chi_{d}(G)-\chi(G) \leq 2$. Akbari et al. (2) proved this conjecture for bipartite regular graphs. Some upper bounds for the dynamic chromatic number of graphs have been studied in recent years. In (11, 12), Mohanapriya et al. studied δ-dynamic chromatic number of helm and fan graph families. There are many upper bounds and lower bounds for $\chi_{d}(G)$ in terms of graph parameters. For example, Theorem A [13]. Let G be a graph with maximum degree $\Delta(G)$. Then $\chi_{d}(G) \leq \Delta(G)+$ 3. In this regard, for a graph G with $\Delta(G) \geq 3$, it was proved that $\chi_{d}(G) \leq \Delta(G)+1$ [8]. Also, for a regular graph G, it was shown by Alishahi: Theorem (4). [rgb] $1,0,0$ If G is a r-regular graph, then $\chi_{d}(G) \leq \chi(G)+14.06 \log r+1$.

Another upper bound on $\chi_{d}(G)$ is $\chi_{d}(G) \leq 1+l(G)$, where $l(G)$ the length of a longest path in G (13) is. Theorem C (7). If G is a connected planar graph with $G \neq C 5$, then
$\chi_{d}(G) \leq 4$ Alishahi (4) proved that for every graph $G \quad$ with $\chi G \geq 4, \chi_{d}(G) \leq \chi(G)+\gamma(G)$, where $\gamma(G)$ is the domination number of a graph. Another upper bound for the dynamic chromatic number of a d-regular graph G in terms of $\chi(G)$ and the independence number of $G, \alpha(G)$, was introduced in (5). In fact, it was proved that $\chi_{d}(G) \leq \chi(G)+$ $2 \log 2 \alpha(G)+3$. In (10), it has been proved that the computational complexity of $\chi_{d}(G)$ for a 3regular graph is an NP-complete problem. Furthermore, in (9) it is shown that it is NPcomplete to determine whether there exists a 3dynamic coloring for a claw free graph with the maximum degree 3.

2. PRELIMINARIES

When it is required for an edge
$u v=e \in E(G)$ to be represented by a vertex such vertex will be denoted by e^{\prime}. The line graph (6) of a graph G, denoted by $L(G)$, is the graph in which, all edges $e_{i} \in E(G)$ are represented by $e_{i}^{\prime} \in V(L(G))$ and an edge $e_{i}^{\prime} e^{\prime} \in E(L(G))$ if and only if the edges e_{i}, e_{j} share a vertex (are incident) in G.

The middle graph of G, denoted by $M(G)$ is defined as follows. The vertex set of $M(G)$ is $V(G) \cup E(G)$. Two vertices x, y in the vertex set of $M(G)$ are adjacent in $M(G)$ in case one of the following holds:
(i) $\quad x, y$ are in $E(G)$ and x, y are adjacent in G.
(ii) x is in $V(G), y$ is in $E(G)$, and x, y are
incident in G.
The total graph (6) of G, denoted by has vertex set $V(G) \cup E(G)$, and edges joining all elements of this vertex set which are adjacent or incident in G.

The central graph (15) of a graph G denoted by $C(G)$ is formed by subdividing each

[^0]edge of G by a vertex, and joining each pair of vertices of the original graph which were previously non-adjacent.

3. SOME PROPERTIES OF MIDDLE, TOTAL, CENTRAL AND LINE GRAPHS

MIDDLE GRAPH

- The number of vertices in $M\left(W_{n}\right)=7 n$
- The number of edges in $M\left(W_{n}\right)=17 n$.
- The maximum degree of $M W={ }_{n}(M(W))=$ 8.
- The minimum degree of $M\left(W_{n}\right), \delta\left(M\left(W_{n}\right)\right)=1$.
- The number of vertices having maximum degree Δ in $M\left(W_{n}\right)=n$.
- The number of vertices having minimum degree δ in $M\left(W_{n}\right)=n$.

TOTAL GRAPH

- The number of vertices in $T\left(W_{n}\right)=7 n$.
- The number of edges in $T\left(W_{n}\right)=21 n$.
- The maximum degree of $T\left(W_{n}\right)_{n} \Delta\left(T\left(W_{n}\right)\right)=8$.
- The minimum degree of $T\left(W_{n}, \delta\left(T\left(W_{n}\right)=2\right.\right.$.
- The number of vertices having maximum degree Δ in $T\left(W_{n}\right)=2 n$.
- The number of vertices having minimum degree δ in $T\left(W_{n}\right)=n$.

CENTRAL GRAPH

- The number of vertices in $C\left(W_{n}\right)=7 n$.
- The number of edges in $C\left(W_{n}\right)=\frac{3 n^{3 n+1}+n}{2}$.
- The maximum degree of $C(W), \Delta \underset{n}{C}(W))={ }_{n}$ $3 n-1$.
- The minimum degree of $C\left(W_{n}\right), \delta\left(C\left(W_{n}\right)\right)=2$.
- The number of vertices having maximum degree Δ in $C\left(W_{n}\right)=3 n$.
- The number of vertices having minimum degree δ in $C\left(W_{n}\right)=4 n$.

LINE GRAPH

- The number of vertices in $L\left(W_{n}\right)=4 n$.
- The number of edges in $L\left(W_{n}\right)=9 n$.
- The maximum degree of $L\left(W_{n}\right), \Delta\left(L\left(W_{n}\right)\right)=6$.
- The minimum degree of $L\left(W_{n}\right), \delta\left(L\left(W_{n}\right)\right)=3$.
- The number of vertices having maximum degree Δ in $L\left(W_{n}\right)=n$.
- The number of vertices having minimum degree δ in $L\left(W_{n}\right)=n$.

4. MAIN RESULTS

Theorem 4.1 If $n \geq 3$ the dynamic chromatic number of the middle graph of web graph $M\left(w_{n}\right), \chi_{d}\left(M\left(w_{n}\right)\right)=5$.
Proof
Let $V(W n)=\left\{v_{i}, u_{i}, w_{i}\right.$ for $\left.1 \leq i \leq n\right\}$ and Let $(M(W n))=\left\{v_{i}, u_{i}, w_{i}\right.$ for $1 \leq i \leq$ $n\} U\left\{p_{i}, a_{i}, b_{i}, c_{i}\right.$ for $\left.1 \leq i \leq n\right\}$, where $p_{i}, a_{i}, b_{i}, c_{i}$ are the vertices of $M(W){ }_{n}$ corresponding
to the edge $v_{i} v_{i+1}$ of $W_{n}(1 \leq i \leq n-1), v_{i} u_{i}$ of $W_{n}(1 \leq i \leq n), \mathrm{u}_{\mathrm{i}} u_{i+1}$ of $W_{n}(1 \leq i \leq n-1), u_{i} w_{i}$ of $W_{n}(1 \leq i \leq n)$.

Note that any three consecutive vertices of the path must be colored differently in any dynamic coloring of $M\left(W_{n}\right)$, since the first and third vertices are the only neighbours of second vertex and must be colored differently (by double adjacency conditions) and also differently from the second vertex.

Therefore, $\chi_{d}\left(M\left(W_{n}\right)\right) \geq 5$.
Consider 5-coloring of $M\left(W_{n}\right)$ as dynamic.

Case 1 if n is even

- For $1 \leq i \leq n$, assign the color c_{1} to the vertices v_{i}
- For $1 \leq i \leq n$, assign the color c_{1} to the vertices u_{i}
- For $1 \leq i \leq n$, assign the color c_{4} to the vertices w_{i}
- For $1 \leq i \leq n, \forall \mathrm{n}$ is odd, assign the color c to vertices p_{i}
- For $1 \leq i \leq n, \forall \mathrm{n}$ is even, assign the color c_{3} to vertices p_{i}
- For $1 \leq i \leq n$, assign the color c_{4} to the vertices a_{i}
- For $1 \leq i \leq n, \forall \mathrm{n}$ is odd, assign the color c_{2} to the vertices b_{i}
- For $1 \leq i \leq n, \forall \mathrm{n}$ is even, assign the color c_{3} to the vertices b_{i}
- For $1 \leq i \leq n$, assign the color c_{5} to the vertices c_{i}

Case 2 if n is odd

- For $1 \leq i \leq n$, assign the color c_{1} to the vertices v_{i}
- For $1 \leq i \leq n$, assign the color c_{1} to the vertices u_{i}
- For $1 \leq i \leq n$, assign the color c_{4} to thevertices w_{i}
- For $1 \leq i \leq n-1, \forall n$ is odd, assign the color c_{2} to vertices p_{i}
- For $1 \leq i \leq n-1, \forall n$ is even, assign the color c_{3} to vertices p_{i} and assign the color c_{4} to vertex p_{n}
- For $2 \leq i \leq n-1$, assign the color c_{4} to the vertices a_{i} and assign c_{3} to a_{1} and c_{2} to vertex a_{n}
- For $1 \leq i \leq n-1, \forall n$ is odd, assign the color c_{2} to the vertices b_{i}
- For $1 \leq i \leq n-1, \forall n$ is even, assign the color c_{3} to the vertices b_{i} and assign c_{4} to vertex b_{n}
- For $1 \leq i \leq n$, assign the color c_{5} to the vertices c_{i}

From the cases above, it follows that $\chi_{d}\left(M\left(W_{n}\right)\right) \leq$ 5.

Hence, $\chi_{d}\left(M\left(W_{n}\right)\right)=5, \forall n \geq 3$. An easy check shows that this is minimum dynamic 5 -coloring.
Theorem 4.2. If $n \geq 3$ the dynamic chromatic number of the total graph of web graph $T(W n)$,

$$
7 \text { if n odd }
$$

$\chi_{d}\left(\mathrm{~T}_{\mathrm{n}}\right)=6$ if neven.
Proof
Let $V(W n)=\left\{v_{i}, u_{i}, w_{i}\right.$ for $\left.1 \leq i \leq n\right\}$
and Let $((W n))=\left\{v_{i}, u_{i}, w_{i}\right.$ for $1 \leq i \leq$ $n\} U\left\{p_{i}, a_{i}, b_{i}, c_{i}\right.$ for $\left.1 \leq i \leq n\right\} \quad$, where $p_{i}, a_{i}, b_{i}, c_{i}$ are the vertices of $M\left(W_{n}\right)$ corresponding to the edge $v_{i} v_{i+1}$ of $W_{n}(1 \leq i \leq n-1), v_{i} u_{i}$ of $W_{n}(1 \leq i \leq n), \mathrm{u}_{\mathrm{i}} u_{i+1}$ of $W_{n}(1 \leq i \leq n-1), u_{i} w_{i}$ of $W_{n}(1 \leq i \leq n)$.

Note that any three consecutive vertices of the path must be colored differently in any dynamic coloring of $M\left(W_{n}\right)$, since the first and third vertices are the only neighbors of second vertex and must be colored differently (by double adjacency conditions) and also differently from the second vertex.
Case 1 if n is odd

- For $1 \leq i \leq n, \forall n$ is odd, assign the color c to vertices v_{i}
- For $1 \leq i \leq n, \forall n$ is even, assign the color 2 to vertices v_{i} and assign the color C_{3} to vertex v_{n}
- For $1 \leq i \leq n, \forall n$ is odd, assign the color c to vertices u_{i}
- For $1 \leq i \leq n, \forall n$ is even, assign the color c_{6} to vertices u_{i} and assign the color c_{7} to vertex u_{n}
- For $1 \leq i \leq n, \forall n$ is odd, assign the color c_{6} to vertices w_{i}
- For $1 \leq i \leq n, \forall n$ is even, assign the color c_{5} to vertices w_{i}
- For $1 \leq i \leq n, \forall n$ is odd, assign the color c_{3} to vertices p_{i}
- For $1 \leq i \leq n, \forall n$ is even, assign the color c_{4} to vertices p_{i} and assign the color c_{2} to vertex p_{n}
- Assign the color c_{4} to vertex a_{1} and c_{1} to vertex a_{n}
- For $1 \leq i \leq n, \forall n$ is even, assign the color c_{1} to vertices a_{i}
- For $2 \leq i \leq n-1, \forall n$ is odd, assign the color c_{2} to vertices a_{i}
- For $1 \leq i \leq n, \forall n$ is odd, assign the color c_{3} to vertices b_{i}
- For $1 \leq i \leq n, \forall n$ is even, assign the color c_{4} to vertices b_{i} and assign the color c_{2} to vertex b_{n}
- For $1 \leq i \leq n, \forall n$ is odd, assign the color c_{1} to vertices c_{i}
- For $1 \leq i \leq n, \forall n$ is even, assign the color c_{2} to
vertices c_{i} and assign the color c_{3} to vertex c_{n}
Hence odd graph has 7 colors.
Case 2 if n is even
- For $1 \leq i \leq n, \forall n$ is odd, assign the color c_{1} to vertices v_{i}
- For $1 \leq i \leq n, \forall n$ is even, assign the color c_{2} to vertices v_{i}
- For $1 \leq i \leq n, \forall n$ is odd, assign the color c_{5} to vertices u_{i}
- For $1 \leq i \leq n, \forall n$ is even, assign the color c_{6} to vertices u_{i}
- For $1 \leq i \leq n, \forall n$ is odd, assign the color c_{6} to vertices w_{i}
- For $1 \leq i \leq n, \forall n$ is even, assign the color c_{5} to vertices w_{i}
- For $1 \leq i \leq n, \forall n$ is odd, assign the color c_{3} to vertices p_{i}
- For $1 \leq i \leq n, \forall n$ is even, assign the color c_{4} to vertices p_{i}
- For $1 \leq i \leq n, \forall n$ is even, assign the color c_{1} to vertices a_{i}
- For $1 \leq i \leq n, \forall n$ is odd, assign the color c_{2} to vertices a_{i}
- For $1 \leq i \leq n, \forall n$ is odd, assign the color c_{3} to vertices b_{i}
- For $1 \leq i \leq n, \forall n$ is even, assign the color c_{4} to vertices b_{i}
- For $1 \leq i \leq n, \forall n$ is odd, assign the color c_{1} to vertices c_{i}
- For $1 \leq i \leq n, \forall n$ is even, assign the color c_{2} to vertices c_{i}

Hence even graph has 6-colors.
7 if n odd
Hence, $\chi_{d}(T W n)=6$ if n even,$\forall n \geq$
3. An easy check shows that this is minimum dynamic 5-coloring.

Theorem 4.3 If $n \geq 3$ the dynamic chromatic number of the central graph of web graph $C\left(W_{n}\right), \chi_{d}\left(C\left(W_{n}\right)\right)=3 n$.

Proof

vertices of $\frac{\text { Let } v, ~}{i}, \underset{i}{w}{ }_{i}$ for $(1 \leq i \leq n)$ be the
W_{n}. Let $p_{i}, a_{i}, b_{i}, c_{i}$ be the subdivisions of the edges $v_{i} v_{i+1}$ of $W_{n}(1 \leq i \leq n-1)$, $v_{i} u_{i}$ of $W_{n}(1 \leq i \leq n), u_{i} u_{i+1}$ of $W_{n}(1 \leq i \leq n-1)$, $u_{i} w_{i}$ of $W_{n}(1 \leq i \leq n)$.

Consider $3 n$-coloring of $C\left(W_{n}\right)$ as dynamic.

- For $1 \leq i \leq n$, assign the color c_{i} to vertices v_{i}
- For $1 \leq i \leq n$, assign the color c_{n+i} to vertices u_{i}
- For $1 \leq i \leq n$, assign the color $c_{2} \quad{ }_{n+i}$ to vertices w_{i}
- For $1 \leq i \leq n-2$, assign the color c_{i+2} to vertices p_{i}, assign the color c_{2} to vertex p_{n} and c_{1} to vertices p_{n-1}.
- If a_{i} is even

For $1 \leq i \leq n, \forall n$ is odd, assign the color c_{2} to vertices a_{i}

For $1 \leq i \leq n, \forall n$ is even, assign the color c_{3} to vertices a_{i}

- If a_{i} is odd

For $1 \leq i \leq n, \forall n$ is odd, assign the color c_{2} to vertices a_{i}

For $1 \leq i \leq n, \forall n$ is even, assign the color c_{3} to vertices a_{i} and assign the color c_{4} to the vertex a_{n}

- For $1 \leq i \leq n$, assign the color c_{1} to vertices b_{i}
- For $1 \leq i \leq n$, assign the color c_{1} to vertices c_{i} Thus we get, $\chi_{d}\left(C\left(W_{n}\right)\right) \leq 3 n$.

Suppose $\chi_{d}\left(C\left(W_{n}\right)\right)=3 n-1$.

Here each p_{i} and p_{i+1}, a_{i} and a_{i+1}, b_{i} and b_{i+1}, c_{i} and c_{i+1} are non-adjacent vertices.

A $3 n-1$-coloring of $C\left(W_{n}\right)$ in which p_{i} and p_{i+1}, a_{i} and a_{i+1}, b_{i} and b_{i+1}, c_{i} and c_{i+1} receive the corresponding same colors and must satisfy both adjacency and double adjacency conditions unless the double adjacency condition is not satisfied for some vertex v, u, w adjacent to p_{i} and p_{i+1}, a_{i} and a_{i+1}, b_{i} and b_{i+1}, c_{i} and c_{i+1}. This is contradiction that the dynamic-coloring with $3 n-1$ colors is not possible.

Therefore, $\chi_{d}\left(C\left(W_{n}\right)\right) \geq 3 n$.
Hence, $\chi_{d} C W_{n}=3 n, \forall \mathrm{n} \geq 3$.
Theorem 4.4 If $n \geq 3$ the dynamic chromatic number of the line graph of web graph $L\left(W_{n}\right), \chi_{d}$ $\left(L\left(W_{n}\right)\right)=4$.

Proof

By definition of line graph, each edge of W_{n} is taken to be as vertex is $L\left(W_{n}\right)$ The vertices
$p_{i} a_{i} b_{i} c_{i}$ for $(1 \leq i \leq n)$ induce a clique of order n in $L\left(W_{n}\right)$, That is $V\left(L\left(W_{n}\right)\right)=\left\{p_{i}: 1 \leq i \leq\right.$ $n\} U\left\{a_{i}: 1 \leq i \leq n\right\} U\left\{b_{i}: 1 \leq i \leq n\right\} U\left\{c_{i}: 1 \leq\right.$ $i \leq n\}$.

Thus we have, $\chi_{d}\left(L\left(W_{n}\right)\right) \geq 4$.
Now consider the vertex set $V\left(L\left(W_{n}\right)\right)$ and color class $c=\left\{c_{1}, c_{2}, c_{3}, \ldots, c_{n}\right\}$. Assign the colors to $L\left(W_{n}\right)$ to obtain dynamic-coloring as follows:

Case 1 if n is even

- For $1 \leq i \leq n, \forall n$ is odd, assign the color c_{1} to vertices p_{i}
- For $1 \leq i \leq n, \forall n$ is even, assign the color c_{2} to vertices p_{i}
- For $1 \leq i \leq n$, assign the color c_{3} to vertices a_{i}
- For $1 \leq i \leq n, \forall n$ is odd, assign the color c_{1} to vertices b_{i}
- For $1 \leq i \leq n, \forall n$ is even, assign the color c_{2} to vertices b_{i}
- For $1 \leq i \leq n$, assign the color c_{4} to vertices c_{i}

Case 2 if n is odd

- For $1 \leq i \leq n, \forall n$ is odd, assign the color c_{1} to vertices p_{i}
- For $1 \leq i \leq n, \forall n$ is even, assign the color c_{2} to vertices p_{i} and assign the color c_{3} to vertex p_{n}
- Assign the color c_{2} to vertex a_{1}
- For $2 \leq i \leq n-1$, assign the color c_{3} to vertices a_{i} and assign the color c_{1} to vertex a_{n}
- For $1 \leq i \leq n, \forall n$ is odd, assign the color c_{1} to vertices b_{i}
- For $1 \leq i \leq n, \forall n$ is even, assign the color c_{2} to vertices b_{i} and assign the color c_{3} to vertex b_{n}
- For $1 \leq i \leq n$, assign the color c_{4} to vertices c_{i}

Thus, $\chi_{d}(L(W n)) \leq 4$
Hence, $\chi_{d}\left(L\left(W_{n}\right)\right)=4, \forall n \geq 3$. An easy check
shows that this is minimum dynamic 4 -coloring.

REFERENCES

1. Ahadi, A., S. Akbari., A. Dehghana and M. Ghanbari, (2012). On the difference betweenchromatic number and dynamic chromatic number of graphs. Discrete Math. 312: 2579-2583.
2. Akbari, S., M. Ghanbari and S. Jahanbakam, (2010). On the dynamic chromatic number of graphs, in: Combinatorics and Graphs, in: Contemp. Math. Amer. Math. Soc. 531:11-18.
3. Akbari, S., M. Ghanbari and S. Jahanbekam, (2009). On the list dynamic coloring of graphs. Discrete Appl. Math. 157: 3005-3007
4. Alishahi, M., (2012). Dynamic chromatic number of regular graphs. Discrete Appl. Math. 160: 2098-2103.
5. Dehghan, A. and A. Ahadi, (2012). Upper bounds for the 2-hued chromatic number of graphs in terms of the independence number. Discrete Appl. Math. 160(15): 2142-2146.
6. Harary, F. (1969). Graph Theory, Narosa Publishing home, New Delhi.
7. Kim, S.J., S.J. Lee and W.J. Park, (2013). Dynamic coloring and list dynamic coloring of planar graphs. Discrete Appl. Math. 161: 22072212.
8. Lai, H.J., B. Montgomery and H. Poon, (2003). Upper bounds of dynamic chromatic number. Ars Combin. 68: 193-201.
9. Li, X, and W. Zhou, (2008). The 2nd-order conditional 3 -coloring of claw-free graphs, Theoret. Comput. Sci. 396: 151-157.
10. Li, X., X. Yao., W. Zhou and H. Broersma, (2009). Complexity of conditional colorability of graphs. Appl. Math. Lett. 22: 320-324.
11. Mohanapriya, N., J. Vernold Vivin, and M. Venkatachalam, (2016). δ - Dynamic chromatic number of Helm graph families. Cogent Math. 3(1), 1178411.
12. Mohanapriya, N., J. Vernold Vivin and M. Venkatachalam, (2016). On dynamic coloring of fan graphs, Int. J. Pure Appl. Math. 106:169174.
13. Montgomery, B., (2001). Dynamic coloring of graphs, ProQuest LLC, Ann Arbor, MI, Ph.D Thesis, West Virginia University.
14. Taherkhani, A., (2016). On r-dynamic chromatic number of graphs, Discrete Appl. Math. 201: 222-227.
15. Vernold Vivin, J., (2007). Harmonious coloring of total graphs, n-leaf, central graphs and circumdetic graphs, Bharathiar University, Ph.D Thesis, Coimbatore, India.

[^0]: *Correspondence: Venkatachalam, M., PG and Research Department of Mathematics, Kongunadu Arts and Science College, Coimbatore, Tamil Nadu, India. E.mail: venkatmaths@gmail.com

