RESEARCH ARTICLE

ON r - DYNAMIC VERTEX COLORING OF SOME GRAPHS

C.S. Gomathi and N. Mohanapriya*

PG and Research Department of Mathematics, Kongunadu Arts and Science College (Autonomous), Coimbatore-641029, Tamil Nadu, India

Abstract

An r - dynamic is an proper vertex k coloring with an function $a: V(G) \rightarrow T$ where $|T|=k$ and it is k - colorable. It can be defined as $\mid a\left(\operatorname{Neigh}(v) \mid \geq \min \left\{r, \operatorname{deg}_{G}(v)\right\}\right.$, for each $v \in V(G)$. The r-dynamic chromatic number of a graph G is the minutest coloring k of G which is r dynamic k-colorable and denoted by $\chi_{r}(G)$. In this paper, we have obtain the r - coloring results of some special graphs such as Flower graph F_{n}, Double cone graph $C_{p, q}$, Triangle snake graph $T S_{n}$, Helm graph H_{m}, Crossed prism graph $C P_{q}$.

Mathematics subject classification: 05C15

Keywords: r - dynamic coloring; Flower graph; Double cone graph; Triangle snake graph; Helm graph; Crossed prism graph.

1. INTRODUCTION

Let the graph G be undirected connected with m vertices and n edges. In this paper, the study is made on the r-dynamic chromatic number which was first introduced by Montgomery [6]. An r-dynamic coloring is an proper vertex coloring such that coloring of the adjacent vertices should not receives the similar color and each vertex $V(G)$ has neighbors atleast $\min \left\{r, \operatorname{deg}_{G}(v)\right\}$ different color classes. When $r=1$ then it is equal to the chromatic number of the graph. The bounds of r - dynamic coloring was given minimum and maximum degree. Furthermore, some of references are given for r - dynamic coloring in the following paper [1], [7], [4], [5] and the bounds are studied from [2] [3]. The most familiar lower bound was given in the following lemma.
Lemma 1. $\chi_{r}(G) \geq \min \{\mathrm{r}, \Delta(\mathrm{G})\}+1$
The Flower graph are derived from the Helm graph by adding pendent edge from pendent vertex to the hub vertex.
The Double cone graph is an special case of cone graph $C_{m}+\bar{K}_{n}, \bar{K}=2$.
The Triangle snake graph is derived from the path graph p_{n-1}, and addi- tionally adding edges
$\left(v_{2 i-1}, v_{2 i+1}\right)$ for $i=1,2, \ldots, n-1$. It is denoted as $T S_{n}, n$ is odd.
The Helm graph is obtained from the wheel graph by adding pendent edge to each vertex. So that each pendent edge has additionally a vertex. [7] The Crossed prism graph is an even graph and it is obtained by taking two disjoint cycle and adding an edges $\left(v_{i}, v_{2 i+1}\right)$ and $\left(v_{i+1}, v_{2 i}\right)\left(v_{i+1}\right.$, $v_{2 i}$) for $i=1,3, \cdots, n-1$.

2. Results on r - dynamic coloring on some graphs

Lemma 2. Let F_{a} be the flower graph. The lower bound for r-dynamic chromatic number of flower graph is

$$
\begin{aligned}
& \quad \chi_{r}\left[F_{a}\right] \geq \\
& \left\{\begin{array}{c}
\delta+1,1 \leq r \leq \delta \\
\Delta+1, \delta+1 \leq r \leq \Delta
\end{array}\right. \\
& \quad \text { Proof : Let } V\left(F_{a}\right)=\left\{u, u_{i}, t_{j}:\right. \\
& 1 \leq i \leq a, 1 \leq j \leq a\} \text { where } u \text { is } \\
& \text { the center vertex which joins the } \\
& \text { vertices } u_{i} \text { and } t_{j} \text { for } 1 \leq i \leq a \\
& \text { and } 1 \leq j \leq a \text {. The minimum } \\
& \text { degree of } F_{a} \text { is } 2 \text { and the maximum } \\
& \text { degree is } 2 \text { a. For } 1 \leq r \leq \delta, \text { the }
\end{aligned}
$$

vertices $V=u, u_{1}, u_{2}$ persuade a clique of order $\delta+1$ in F_{a}. Thus, $\chi_{r}\left[F_{a}\right] \geq \delta+1$. Thus for $\delta+1 \leq r \leq \Delta$ based on Lemma 1, we have $\chi_{r}\left[F_{a}\right] \geq \min \left\{r, \Delta\left[F_{a}\right]\right\}=$ $\Delta+1$. Thus, it completes the proof.
Theorem 1. For $\mathrm{a} \geq 3$, the r - dynamic coloring of the flower graph F_{a} are

$$
\chi_{r}\left[F_{a}\right]=\left\{\begin{array}{c}
3, \text { for } 1 \leq r \leq 2, a \text { is even } \\
4, \text { for } 1 \leq r \leq 3, a \text { is odd } \\
6, \text { for } 4 \leq r \leq 5, a=5 \\
r+1, \text { otherwise }
\end{array}\right.
$$

Proof: The upper bound for the theorem are illustrated in the following cases:

Case: $\mathbf{1} 1 \leq r \leq 2$, a is even

Based on the lemma 2, we have $\chi_{r}\left[F_{a}\right] \geq 3$. To find the upper bound cosider the following coloring: Color the middle vertex u with color 3 , then color the vertices u_{i} with color 1 and 2 alternatively for $1 \leq i \leq a$ and next color the vertices t_{j} with color 2 and 1 orderly for $1 \leq j \leq a$ Thus, $\chi_{r}\left[F_{a}\right] \leq 3$. Hence, we have $\chi_{r}\left[F_{a}\right]=3$.

Case: $21 \leq r \leq 2$, a is even
Based on the lemma 2, we have $\chi_{r}\left[F_{a}\right] \geq 4$. To find the upper bound consider the following coloring: Color the vertices u_{i} with color 1 and 2 alter- natively for $1 \leq i \leq$ $a-1$, then color the vertex u_{a} with color 3. Next color the vertices t_{j} with color 2 and 1 in order for $1 \leq j \leq a$ and finally color the middle vertex u with color 4 . Thus, $\chi_{r}\left[F_{a}\right] \leq 4$. Therefore, $\chi_{r}\left[F_{a}\right]=4$.

Case: $34 \leq r \leq 5, a=5$
Based on the lemma 2, we have $\chi_{r}\left[F_{a}\right] \geq 6$. To find the upper bound consider the following coloring: At this particular case, we color the vertices u_{i} with separate colors such as $1,2, \cdots, 5$ for $1 \leq i \leq a$ Then color the vertices
t_{j} with color $3,4,5,1$ and 2 for $1 \leq j \leq a$. At the last color the center vertex u with color 6 . Thus, $\chi_{r}\left[F_{a}\right] \leq 6$. Hence, we have $\chi_{r}\left[F_{a}\right] \leq 6$.

Case: 4 otherwise
Based on the lemma 2, we have $\chi_{r}\left[F_{a}\right] \geq$ $r+1$. To find the upper bound consider the following coloring: Color the center vertices u_{i} and t_{j} with color $1,2, \cdots, r$ based on the r -adjacency condition. But, there is also a need of one more color to satisfy the condition so color the vertex u with color $r+1$. Therefore, $\chi_{r}\left[F_{a}\right] \leq r+1$. Hence, we have $\chi_{r}\left[F_{a}\right]=r+1$.
Theorem 2. For $\mathrm{p}=2, \mathrm{q} \geq 4$, the r - dynamic coloring of the double cone graph $\mathrm{C}_{\mathrm{p}, \mathrm{q}}$ are

$$
\chi_{r}\left[C_{p, q}\right]=
$$

$\left\{\begin{array}{c}3, \text { for } 1 \leq r \leq 2, \text { qis even } \\ 4, \text { for } 1 \leq r \leq 2 \text { and } q \text { is odd } 4 \\ 4, \text { for } r=3, m \equiv 0(\bmod 3) \\ 5, \text { for } r \neq 3, m \neq 0(\bmod 3) \\ 7, \text { for } 4 \leq r \leq 5, m \equiv 2(\bmod 3) \\ r+2, \text { otherwise }\end{array}\right.$
Proof: Let the vertices of $C_{p, q}=V\left(\bar{K}_{2}\right) \cup$ $V\left(C_{q}\right)$ i.e., $V\left(C_{p, q}\right)=\left\{p_{1,} p_{2,}, u_{i}: 1 \leq i \leq\right.$ $q\}$. The vertices of \bar{K}_{2} are adjacent to each vertices of C_{q} but p_{1} is not adjacent to p_{2}.The edges are $\left\{u_{i} u_{i+1}: 1 \leq i \leq q-1\right\} \cup\left\{u_{q} u_{1}\right\} \cup$ $\left\{p_{1} u_{i}: 1 \leq i \leq q\right\} \cup\left\{p_{2} u_{i}: 1 \leq i \leq q\right\}$. The maximum and minimum degree of $C_{2, q}$ are q and 4.

Case: $\mathbf{1} 1 \leq r \leq 2$

If q is even, color p_{1} and p_{2} with color 1 and the leftover vertices u_{i} with color 2 and 3 alternatively for $1 \leq i \leq q$. Hence, $\chi_{r}\left[C_{p, q}\right] \leq 3$. Based on the Lemma 1 we have $\chi_{r}\left[C_{p, q}\right] \geq \min \left\{r, \Delta\left[C_{p, q}\right]\right\}+1=3$. Hence, $\chi_{r}\left[C_{p, q}\right]=3$.
If q is odd, Color p_{1} and p_{2} with color 1 . The remaining vertices u_{i} with color 2 and for $1 \leq i \leq q-1$ and the leftover vertex u_{q} with
color 4. Therefore, $\chi_{r}\left[C_{p, q}\right] \leq 4$. Based on the Lemma 1 we have $\chi_{r}\left[C_{p, q}\right] \geq \min \left\{r, \Delta\left[C_{p, q}\right]\right\}+1=3$. Thus, $\chi_{r}\left[C_{p, q}\right] \geq 4$. Hence, $\chi_{r}\left[C_{p, q}\right]=4$.
Case: $2 r=3$
If $m \equiv 0(\bmod 3)$, then color the vertices u_{i} with color 2,3 and 4 orderly for $1 \leq i \leq q$. Atlast color the vertices p_{1} and p_{2} with color 1 . Thus, $\chi_{r}\left[C_{p, q}\right] \leq 4$. Based on the Lemma 1 the lower bound for $C_{p, q}$ are $\chi_{r}\left[C_{p, q}\right] \geq 4$. Therefore, $\chi_{r}\left[C_{p, q}\right]=4$.
If $m \not \equiv 0(\bmod 3)$, then color the vertices p_{1} and p_{2} as in the case $m \equiv 0(\bmod 3)$ and color u_{i} with color 2,3 and 4 sequencingly for $1 \leq i \leq$ $q-1$. But, to satisfy the r-adjacency condition we need of one more color so color the vertex u_{q} with color 5. Therefore, $\chi_{r}\left[C_{p, q}\right] \leq 5$. Based on the Lemma 1 the lower bound for $C_{p, q}$ are $\chi_{r}\left[C_{p, q}\right] \geq 5$. Therefore, $\chi_{r}\left[C_{p, q}\right]=5$.
Case: $34 \leq r \leq 5, m \equiv 2(\bmod 3)$
Based on the Lemma 1 the lower bound for $C_{p, q}$ are $\chi_{r}\left[C_{p, q}\right] \geq 7$. The upper bound can be calculated by the following coloring: Color the vertices p_{1} and p_{2} with color 1 , then color the vertices u_{i} with color 2,3 and 4 alternatively for $1 \leq i \leq q-2$. Next color the vertices u_{q-1} with color 5 and u_{q} with color 6 . But still there is an need of one color so change the color of vertex p_{2} with color 7. Hence, $\chi_{r}\left[C_{p, q}\right] \leq 7$. Therefore, $\chi_{r}\left[C_{p, q}\right]=7$.
Case: 4 Otherwise
Based on the Lemma 1 the lower bound for $C_{2, q}$ are $\chi_{r}\left[C_{p, q}\right] \geq r+2$. The upper bound can be calculated by the following coloring: Other than the about values of r, the result of double cone graph leads to $r+2$. So, color the vertex p_{1} with color 1 , then color the vertices u_{i} with color $2,3, \cdots, r+1$ for $1 \leq i \leq q$ either randomly or sequencingly but the coloring should satisfy the r adjacency condition. Finally, color the vertex p_{2} with color $r+2$. Hence, $\chi_{r}\left(C_{p, q}\right) \leq r+2$. Therefore, $\chi_{r}\left(C_{p, q}\right)=r+2$.

Lemma 3. Let $T S_{n}$, be the Triangle snake graph. The lower bound for r - dynamic chromatic number of Triangle snake graph is

$$
\chi_{r}\left[T S_{n}\right] \geq \begin{cases}\delta+1, & 1 \leq r \leq \delta \\ \Delta+1, \delta+1 \leq r \leq \Delta\end{cases}
$$

Proof: Let $V\left(T S_{n}\right)=\left\{u_{i}: 1 \leq i \leq n-\right.$ $1\} \cup\left\{u_{i i+1}: 1 \leq i \leq n-2\right\}$ where u_{i} are the vertices of path P_{n-1} and $u_{i i+1}$ are the vertices corresponding to the edges u_{i} and u_{i+1}. Thus the minimum degree of $T S_{n}$ are 2 and the maximum degree is 4 . For $1 \leq r \leq \delta$, the vertices $\mathrm{V}=u_{12}, u_{1}, u_{2}$ persuade a clique of order $\delta+1$ in $\left(T S_{n}\right)$. Thus, $\chi_{r}\left[T S_{n}\right] \geq \delta+$ 1. Thus for $\delta+1 \leq r \leq \Delta$ based on Lemma 1 , we have $\chi_{r}\left[T S_{n}\right] \geq \min \left\{r, \Delta\left[T S_{n}\right]\right\}=\Delta+1$. Thus, it completes the proof.
Theorem 3. For $\mathrm{n} \geq 3$, n is odd the r - dynamic coloring of the Triangle snake graph $T S_{n}$ are

$$
\chi_{r}\left[T S_{n}\right] \geq\left\{\begin{array}{cc}
3, & 1 \leq r \leq \delta \\
\Delta+1, & \delta+1 \leq r \leq \Delta
\end{array}\right.
$$

Proof: The upper bound for Triangle snake graph are illustrated in following cases:
Case : $\mathbf{1} 1 \leq r \leq \delta$
Based on the Lemma 3 the lower bound of $T S_{n}$ are $\chi_{r}\left(T S_{n}\right) \geq 3$. To find the upper bound we consider the following coloring: color the vertices u_{i} with color 1 and 2 alternatively for $1 \leq i \leq n-1$. Then color the remaining vertices $u_{i i+1}$ with single color 3 for $1 \leq i \leq n-2$. Thus we have $\chi_{r}\left(T S_{n}\right) \leq 3$. Therefore, $\chi_{r}\left(T S_{n}\right)=3$.
Case: $\mathbf{2} \delta+1 \leq r \leq \Delta$

- Based on the Lemma 3 the lower bound of $T S_{n}$ are $\chi_{r}\left(T S_{n}\right) \geq 4$. To find the upper bound we consider the following coloring: when $r=3$, color the vertices u_{i} with color 1,2 and 3 orderly for $1 \leq i \leq n-1$ and finally color the last set of vertices $u_{i i+1}$ with color 4 for $1 \leq i \leq n-2 \quad$. Therefore, $\chi_{r}\left(T S_{n}\right) \leq 4 . \chi_{r}\left(T S_{n}\right)=4$.
- Based on the Lemma 3 the lower bound of $T S_{n}$ are $\chi_{r}\left(T S_{n}\right) \geq \mathrm{r}+1$. To find the upper bound we consider the following coloring: when $r=4$, color the vertices u_{i} with the colors as given in the $\mathrm{r}=3$.

Next, color the vertices $u_{i i+1}$ with color 4 and 5 alternatively for $1 \leq i \leq n-$ 2. Therefore, $\chi_{r}\left(T S_{n}\right) \leq 5$. Thus we have obtained $r+1$ colors. Hence, we have $\chi_{r}\left(T S_{n}\right) \leq \mathrm{r}+1 . \chi_{r}\left(T S_{n}\right)=\mathrm{r}+$ 1.

Theorem 4. For $\mathrm{q} \geq 4, \mathrm{q}$ is even the r - dynamic coloring of the Crossed prism graph $C P_{q}$ are

$$
\begin{aligned}
& \chi_{r}\left[C P_{q}\right] \\
& =\left\{\begin{array}{c}
2, \text { for } r=1 \\
4, \text { for } 2 \leq r \leq \Delta, q \equiv 0(\bmod 4) \\
3, \text { for } r=2, q \not \equiv 1(\bmod 3) \\
4, \text { for } r=2, q \equiv 1(\bmod 3) \\
5, \text { for } r \geq \Delta, q \neq 0(\bmod 4) \\
6,
\end{array} \text { for } r \geq \Delta, q=60 L+6, L \in W\right.
\end{aligned}
$$

Proof: The vertex set $V\left(C P_{q}\right)=\left\{t_{i}: 1 \leq\right.$ $i \leq q\} \cup\left\{x_{j}: 1 \leq j \leq q\right\}$ where t_{i} are the inner cycle of crossed prism and x_{j} is the outer cycle. The edges are crossed between the vertices t_{i} and x_{j+1} for i is odd, and the next set of edges are crosses between t_{i} and x_{j-1} for i is even. The maximum and minimum degree of $C P_{q}$ are $\delta=\Delta=3$. Since q is even, we get $q / 2$ set of crossed vertices. Here t_{1} is the second vertex of first crossed prism and t_{2} is the first vertex of second crossed prism. It continues upto q. Similarly, it is same as for x_{j}.
Case: $1 r=1$
Color the vertices t_{i} and x_{j} with color 1 and 2 alternatively for $1 \leq i \leq q$. Thus $\chi_{r}\left(C P_{q}\right) \leq 2$. Based on the Lemma 1 the lower bound for $C P_{q}$ are $\chi_{r}\left(C P_{q}\right) \geq 2$. Therefore, $\chi_{r}\left(C P_{q}\right)=2$.
Case: $22 \leq r \leq \Delta, q \equiv 0(\bmod 4)$
Color the vertices t_{i} with color $1,2,3$ and 4 alternatively for $1 \leq i \leq q$. Next we need to color the verices x_{j} which is quite different since, it does not follow any order or sequencing. The coloring of the vertices x_{j} is dependent on the coloring of the vertices t_{i}. Since it is an even graph, color the vertex x_{1} with the color of the vertex t_{2} and color the vertex x_{2} with the color of the vertex t_{1}. Then, color the vertex x_{3} with the color of t_{4} and the vertex x_{4} with the color of
t_{3}. By continuing this way, color the vertex x_{q} with color of the vertex t_{q-1} and the vertex x_{q-1} with the color of t_{q}. Thus the coloring are interchanged between every pair of vertices. Thence, $\chi_{r}\left(C P_{q}\right) \leq 4$. Based on the Lemma 1 the lower bound for $C P_{q}$ are $\chi_{r}\left(C P_{q}\right) \geq 4$. Therefore, $\chi_{r}\left(C P_{q}\right)=4$.
Case: $3 r=2$
Sub case: $1 q \not \equiv 1(\bmod 3)$, in this subcase there are two subdivisions which are as follows:
If $q \equiv 0(\bmod 3)$, color the vertices t_{i} with color 1,2 and 3 alternatively for $1 \leq i \leq q$. Similarly, color the vertices x_{j} with the colors have used in t_{i} $1 \leq i \leq q$. Therefore, $\chi_{2}\left(C P_{q}\right) \leq 4$.
If $q \equiv 2(\bmod 3)$, color the vertices t_{i} with color 1 , 2 and 3 orderly for $1 \leq i \leq q-2$. Next, color the vertex t_{q-1} with color 1_{2} and color the vertex t_{q} with color 2 . Finally, color the vertices x_{j} from the color 1,2 and 3 either sequencingly or unorderly for $1 \leq j \leq q$ but with an r adjacency condition. Thus, $\chi_{2}\left(C P_{q}\right) \leq 4$. Based on the Lemma 1 the lower bound for $C P_{q}$ are $\chi_{r}\left(C P_{q}\right) \geq 4$. Therefore, $\chi_{r}\left(C P_{q}\right)=4$.
Sub case : $2 q \equiv 1(\bmod 3)$
Color the vertices t_{i} with colors 1,2,3 and 4 orderly for $1 \leq i \leq q-2$ and color the vertex t_{q-1} with color 2 and color the vertex t_{q} with color 3 . Next, color the vertices x_{j} with the same colors as given in t_{i} unorderly with an 2-adjacency condition. Thus, $\chi_{2}\left(C P_{q}\right) \leq 4$. Based on the Lemma 1 the lower bound for $C P_{q}$ are $\chi_{r}\left(C P_{q}\right) \geq 4$. Therefore, $\chi_{r}\left(C P_{q}\right)=4$.
Case: $4 r \geq \Delta$

- If $q \equiv 0(\bmod 4)$, then color the vertices t_{i} with color $1,2,3,4$ and 5 for $1 \leq i \leq q$. Then the coloring of the vertices x_{j} is dependent on the coloring of the vertices t_{i}. The coloring of x_{j} follows the similar way as given in case-2 but with five colors. Thence, $\chi_{\mathrm{r}}\left(C P_{q}\right) \leq$ 5. Based on the Lemma 1 the lower bound for $C P_{q}$ are $\chi_{r}\left(C P_{q}\right) \geq 5$. Therefore, $\chi_{r}\left(C P_{q}\right)=5$.
- If $q=60 L+6$, it is an special case of crossed prism graph, since we need to give six different colors to satisfy the Δ adjacency condition. So color the vertices t_{i} with color 1,2 and 3 sequencingly for $1 \leq i \leq q$ and color the vertices x_{j} with color 4,5 and 6 orderly for $1 \leq i \leq q$. Therefore, $\chi_{\mathrm{r}}\left(C P_{q}\right) \leq 6$. Based on the Lemma 1 the lower bound for $C P_{q}$ are $\chi_{r}\left(C P_{q}\right) \geq 6$. Therefore, $\chi_{r}\left(C P_{q}\right)=6$.

Lemma 4. Let H_{m} be the Helm graph. The lower bound for r-dynamic chromatic number of Helm graph is

$$
\chi_{r}\left[H_{m}\right] \geq\left\{\begin{array}{l}
\delta+1, \quad 1 \leq r \leq \delta \\
\Delta+1, \delta+1 \leq r \leq \Delta
\end{array}\right.
$$

Proof: The vertices of H_{m} are $\left\{x, x_{i}, y_{i}: 1 \leq\right.$ $i \leq m\} . x$ is the hub vertex which is connected to vertex of cycle x_{i} and a pendent edge is add to each vertex of x_{i}. The vertices at the pendent edge are named as y. The minimum and maximum degree of H_{m} are $\delta=1$ and $\Delta=\mathrm{m}$. For $1 \leq r \leq \delta$, the vertices $V=$ x, x_{1}, x_{2} persuade a clique of order $\delta+1$ in (H_{m}). Thus, $\chi_{r}\left[H_{m}\right] \geq \delta+1$. Thus for $\delta+1 \leq r \leq \Delta$ based on Lemma 1, we have $\chi_{r}\left[H_{m}\right] \geq \min \left\{r, \Delta\left[H_{m}\right]\right\}=\Delta+1$. Thus, it completes the proof.
Theorem 5. For $m \geq 3$, the r - dynamic coloring of the Helm graph H_{m} are

$$
\chi_{r}\left[H_{m}\right]=\left\{\begin{array}{c}
4,1 \leq r \leq 3 \text { and } m \text { is odd } \\
3,1 \leq r \leq 2 \text { and } m \text { is even } \\
r+1, \text { otherwise }
\end{array}\right.
$$

Proof: The upper bound for the Helm graph are obtained from the following cases:

Case: $11 \leq r \leq 3$
Based on the Lemma 4, we have $\chi_{r}\left(H_{m}\right) \geq 4$ To find the upper bound consider the following coloring: color the vertices x_{i} with color 1,2 orderly for $1 \leq i \leq m-1$ and color the vertex x_{m} with color 3 . Next color the vertices y_{i} with color 3 for $1 \leq i \leq m-1$ and the vertex y_{m} with color 1 . Finally, the last vertex x with color 4. Hence, $\chi_{r}\left(H_{m}\right) \leq 4$. Therefore, $\chi_{r}\left(H_{m}\right)=4$.

Case : $21 \leq r \leq 2$
Based on the Lemma 4, we have $\chi_{r}\left(H_{m}\right) \geq 3$. To find the upper bound consider the following coloring: color the vertices x_{i} with color 1,2 alternatively for $1 \leq i \leq m$ and color the vertex y_{i} with color 2 and 1 orderly for $1 \leq i \leq m$. The color the vertex x with color 3 . Hence, $\chi_{r}\left(H_{m}\right) \leq 3$. Thus, $\chi_{r}\left(H_{m}\right)=3$.

Case: 3 Otherwise
Based on the Lemma 4, we have $\chi_{r}\left(H_{m}\right) \geq 6$. To find the upper bound consider the following coloring: in this case, there is an special case that is $m=5$, for $r=4,5$. At this case we receives six colors. i.e., color the vertices x_{i} with five different colors for $1 \leq i \leq m$. Similarly, color the vertices y_{i} with the same colors as given in x_{i} but in different order with 4, 5-adjacency condition and color the vertex x with color 6 . Hence, $\chi_{r}\left(H_{m}\right) \leq 6$. Thus, $\chi_{r}\left(H_{m}\right)=6$.
Based on the Lemma 4, we have $\chi_{r}\left(H_{m}\right) \geq 5$. To find the upper bound consider the following coloring: next is to receive $r+1$ colors, at $r=4$ and $m \neq 5$ color the vertices x_{i} and y_{i} for $1 \leq i \leq m$ with colors $1,2,3,4$ either orderly or unorderly but with 4 - adjacency condition. Even though there is four different colors we also need one more color to satisfy 4 - adjacency condition. So color the vertex x with color 5. Therefore, $\chi_{r}\left(H_{m}\right) \leq 5$. Thus, $\chi_{r}\left(H_{m}\right)=5$.
Based on the Lemma 4, we have $\chi_{r}\left(H_{m}\right) \geq \mathrm{r}+$ 1. To find the upper bound consider the following coloring: next at $r=5$, color the vertices x_{i} and y_{i} for $1 \leq i \leq m$ with colors $1,2,3,4$ either orderly or unorderly but with 5 adjacency condition. Here also we need one more color, so color the vertex x with color 6 . Therefore, $\chi_{r}\left(H_{m}\right) \leq 6$. Thus, proceeding by this way, at $r=m$ color the vertices x_{i} and y_{i} for $1 \leq i \leq m$ with colors $1,2, \cdots, m$ but with r adjacency condition. Atlast color the hub vertex x with color $\mathrm{m}+1$. Thus, $\chi_{r}\left(H_{m}\right) \leq \mathrm{m}+1$. Therefore, $\chi_{r}\left(H_{m}\right) \leq \mathrm{r}+1$. Thus, $\chi_{r}\left(H_{m}\right)=$ $r+1$.

REFERENCES

[1] S. Akbari, M. Ghanbari and S. Jahanbekam, (2009). On the list dynamic coloring of
graphs, Discrete Applied Mathematics [5] N. Mohanapriya, G. Nandini, M. 157(14): 3005-3007.
[2] H. Agustin, D. Dafik and A.Y. Harsya, (2016). On r-dynamic coloring of some graph operations, Indonesian Journal of Combinatorics 1(1): 22-30.
[3] H. Furmanczyk, J. Vernold Vivin and N. Mohanapriya, (2018). r-Dynamic chromatic number of some line graphs. Indian Journal of Pure and Applied Mathematics 49(4): 591600.
[4] S. Jahanbekam, J. Kim, O. Suil and D. B. West, (2016). On r-dynamic coloring of graphs, Discrete Applied Mathematics, 206: 65-72.

Venkatachalam, (2018). δ - Dynamic Chromatic number of Double Wheel Graph Families. International Journal of Open Problems in Computer Science and Mathematics 11(4)
[6] B. Montgomery, (2001). Dynamic coloring of graphs,
[7] I. Muhammad, A. Q. Baig and M. Town, (2013). Vertex irregular total labeling of cubic graphs, Utilitas Mathematica 91:287299.

About The License

The text of this article is licensed under a Creative Commons Attribution 4.0 International License

