Kong. Res. J. 7(1): 76-81, 2020 **Publisher**: Kongunadu Arts and Science College, Coimbatore. ISSN 2349-2694, All Rights Reserved, https://www.krjournal.com

RESEARCH ARTICLE

ON *r* - DYNAMIC VERTEX COLORING OF SOME GRAPHS C.S. Gomathi and N. Mohanapriya*

PG and Research Department of Mathematics, Kongunadu Arts and Science College (Autonomous), Coimbatore-641029, Tamil Nadu, India

ABSTRACT

An r- dynamic is an proper vertex k coloring with an function $a : V(G) \to T$ where |T| = k and it is k - colorable. It can be defined as $|a(Neigh(v)| \ge \min\{r, deg_G(v)\})$, for each $v \in V(G)$. The r- dynamic chromatic number of a graph G is the minutest coloring k of G which is r-dynamic k-colorable and denoted by $\chi_r(G)$. In this paper, we have obtain the r- coloring results of some special graphs such as Flower graph F_n , Double cone graph $C_{p,q}$, Triangle snake graph TS_n , Helm graph H_m , Crossed prism graph CP_q .

Mathematics subject classification: 05C15

Keywords: Υ - dynamic coloring; Flower graph; Double cone graph; Triangle snake graph; Helm graph; Crossed prism graph.

1. INTRODUCTION

Let the graph G be undirected connected with m vertices and n edges. In this paper, the study is made on the m r -dynamic chromatic number which was first introduced by Montgomery [6]. An r-dynamic coloring is an proper vertex coloring such that coloring of the adjacent vertices should not receives the similar color and each vertex V(G) has neighbors atleast $min\{r, deg_G(v)\}$ different color classes. When r = 1 then it is equal to the chromatic number of the graph. The bounds of γ - dynamic coloring was given minimum and maximum degree. Furthermore, some of references are given for γ - dynamic coloring in the following paper [1], [7], [4], [5] and the bounds are studied from [2] [3]. The most familiar lower bound was given in the following lemma.

Lemma 1. $\chi_r(G) \ge \min\{r, \Delta(G)\} + 1$

The *Flower graph* are derived from the Helm graph by adding pendent edge from pendent vertex to the hub vertex.

The *Double cone graph* is an special case of cone graph $C_m + \overline{K}_n$, $\overline{K} = 2$.

The *Triangle snake graph* is derived from the path graph p_{n-1} , and addi- tionally adding edges

 (v_{2i-1}, v_{2i+1}) for i = 1, 2, ..., n-1. It is denoted as TS_n , *n* is odd.

The *Helm graph* is obtained from the wheel graph by adding pendent edge to each vertex. So that each pendent edge has additionally a vertex. [7] The *Crossed prism graph* is an even graph and it is obtained by taking two disjoint cycle and adding an edges (v_i, v_{2i+1}) and $(v_{i+1}, v_{2i}) (v_{i+1}, v_{2i})$ for $i = 1, 3, \dots, n - 1$.

2. Results on *r*- dynamic coloring on some graphs

Lemma 2. Let F_a be the flower graph.

The lower bound for $\boldsymbol{\mathcal{T}}$ -dynamic chromatic number of flower graph is

$$\begin{array}{l} \chi_r[F_a] \ge \\ (\delta + 1, \ 1 \le r \le \delta \\ (\Delta + 1, \delta + 1 \le r \le \Delta \end{array}$$

Proof : Let $V(F_a) = \{u, u_i, t_j : 1 \le i \le a, 1 \le j \le a\}$ where *u* is the center vertex which joins the vertices u_i and t_j for $1 \le i \le a$ and $1 \le j \le a$. The minimum degree of F_a is 2 and the maximum degree is 2a. For $1 \le r \le \delta$, the

Page 76-81

^{*}Correspondence: N. Mohanapriya, PG and Research Department of Mathematics, Kongunadu Arts and Science College, Coimbatore – 641 029, Tamil Nadu, India. E.mail: n.mohanamaths@gmail.com

vertices $V = u, u_1, u_2$ persuade a clique of order $\delta + 1$ in F_a . Thus, $\chi_r[F_a] \ge \delta + 1$. Thus for $\delta + 1 \le r \le \Delta$ based on Lemma 1, we have $\chi_r[F_a] \ge \min\{r, \Delta[F_a]\} =$ $\Delta + 1$. Thus, it completes the proof.

Theorem 1. For $a \ge 3$, the r-dynamic coloring of the flower graph F_a are

$$\chi_{r}[F_{a}] = \begin{cases} 3, for \ 1 \le r \le 2, a \text{ is even} \\ 4, for \ 1 \le r \le 3, a \text{ is odd} \\ 6, for \ 4 \le r \le 5, a = 5 \\ r+1, \text{ otherwise} \end{cases}$$

Proof : The upper bound for the theorem are illustrated in the following cases:

Case: $1 \ 1 \le r \le 2$, a is even

Based on the lemma 2, we have $\chi_r[F_a] \ge 3$. To find the upper bound cosider the following coloring: Color the middle vertex u with color 3, then color the vertices u_i with color 1 and 2 alternatively for $1 \le i \le a$ and next color the vertices t_j with color 2 and 1 orderly for $1 \le j \le a$ Thus, $\chi_r[F_a] \le 3$. Hence, we have $\chi_r[F_a] = 3$.

Case: 2 $1 \le r \le 2$, *a is even*

Based on the lemma 2, we have $\chi_r[F_a] \ge 4$. To find the upper bound consider the following coloring: Color the vertices u_i with color 1 and 2 alter- natively for $1 \le i \le a - 1$, then color the vertex u_a with color 3. Next color the vertices t_j with color 2 and 1 in order for $1 \le j \le a$ and finally color the middle vertex u with color 4. Thus, $\chi_r[F_a] \le 4$. Therefore, $\chi_r[F_a] = 4$.

Case: 3 $4 \le r \le 5$, a = 5

Based on the lemma 2, we have $\chi_r[F_a] \ge 6$. To find the upper bound consider the following coloring: At this particular case, we color the vertices u_i with separate colors such as $1, 2, \dots, 5$ for $1 \le i \le a$ Then color the vertices

 t_j with color 3,4,5,1 and 2 for $1 \le j \le a$. At the last color the center vertex u with color 6. Thus, $\chi_r[F_a] \le 6$. Hence, we have $\chi_r[F_a] \le 6$.

Case: 4 otherwise

Based on the lemma 2, we have $\chi_r[F_a] \ge r+1$. To find the upper bound consider the following coloring: Color the center vertices u_i and t_j with color $1, 2, \dots, r$ based on the r-adjacency condition. But, there is also a need of one more color to satisfy the condition so color the vertex u with color r+1. Therefore, $\chi_r[F_a] \le r+1$. Hence, we have $\chi_r[F_a] = r+1$.

Theorem 2. For p = 2, $q \ge 4$, the r - dynamic coloring of the double cone graph $C_{p,q}$ are

$$\chi_r[C_{p,q}] =$$

$$\begin{cases}
3, for \ 1 \le r \le 2, qis \ even \\
4, for \ 1 \le r \le 2 \ and \ q \ is \ odd \ 4 \\
4, for \ r = 3, \ m \equiv 0 (mod \ 3) \\
5, for \ r \ne 3, \ m \equiv 0 (mod \ 3) \\
7, for \ 4 \le r \le 5, m \equiv 2 (mod \ 3) \\
r + 2, otherwise
\end{cases}$$

Proof: Let the vertices of $C_{p,q} = V(\overline{K}_2) \cup V(C_q)$ i.e., $V(C_{p,q}) = \{p_{1,p_2,}, u_i : 1 \le i \le q\}$. The vertices of \overline{K}_2 are adjacent to each vertices of C_q but p_1 is not adjacent to p_2 . The edges are $\{u_i u_{i+1} : 1 \le i \le q - 1\} \cup \{u_q u_1\} \cup \{p_1 u_i : 1 \le i \le q\} \cup \{p_2 u_i : 1 \le i \le q\}$. The maximum and minimum degree of $C_{2,q}$ are q and 4.

Case: $1 \ 1 \le r \le 2$

If q is even, color p_1 and p_2 with color 1 and the leftover vertices u_i with color 2 and 3 alternatively for $1 \leq i \leq q$. Hence, $\chi_r[C_{p,q}] \leq 3$. Based on the Lemma 1 we have $\chi_r[C_{p,q}] \geq \min\{r, \Delta[C_{p,q}]\} + 1 = 3$. Hence, $\chi_r[C_{p,q}] = 3$.

If *q* is odd, Color p_1 and p_2 with color 1. The remaining vertices u_i with color 2 and for $1 \le i \le q - 1$ and the leftover vertex u_q with

color 4. Therefore, $\chi_r[C_{p,q}] \leq 4$. Based on the Lemma 1 we have $\chi_r[C_{p,q}] \geq \min\{r, \Delta[C_{p,q}]\} + 1 = 3$. Thus, $\chi_r[C_{p,q}] \geq 4$. Hence, $\chi_r[C_{p,q}] = 4$. Case: 2 r = 3

If $m \equiv 0 \pmod{3}$, then color the vertices u_i with color 2,3 and 4 orderly for $1 \leq i \leq q$. Atlast color the vertices p_1 and p_2 with color 1. Thus, $\chi_r[C_{p,q}] \leq 4$. Based on the Lemma 1 the lower bound for $C_{p,q}$ are $\chi_r[C_{p,q}] \geq 4$. Therefore, $\chi_r[C_{p,q}] = 4$.

If $m \not\equiv 0 \pmod{3}$, then color the vertices p_1 and p_2 as in the case $m \equiv 0 \pmod{3}$ and color u_i with color 2,3 and 4 sequencingly for $1 \le i \le q-1$. But, to satisfy the *r*-adjacency condition we need of one more color so color the vertex u_q with color 5. Therefore, $\chi_r[C_{p,q}] \le 5$. Based on the Lemma 1 the lower bound for $C_{p,q}$ are $\chi_r[C_{p,q}] \ge 5$. Therefore, $\chi_r[C_{p,q}] = 5$. **Case:** $3 \ 4 \le r \le 5, m \equiv 2 \pmod{3}$

Based on the Lemma 1 the lower bound for $C_{p,q}$ are $\chi_r[C_{p,q}] \ge 7$. The upper bound can be calculated by the following coloring: Color the vertices p_1 and p_2 with color 1, then color the vertices u_i with color 2,3 and 4 alternatively for $1 \le i \le q - 2$. Next color the vertices u_{q-1} with color 5 and u_q with color 6. But still there is an need of one color so change the color of vertex p_2 with color 7. Hence, $\chi_r[C_{p,q}] \le 7$. Therefore, $\chi_r[C_{p,q}] = 7$.

Case: 4 Otherwise

Based on the Lemma 1 the lower bound for $C_{2,q}$ are $\chi_r[C_{p,q}] \ge r+2$. The upper bound can be calculated by the following coloring: Other than the about values of r, the result of double cone graph leads to r + 2. So, color the vertex p_1 with color 1, then color the vertices u_i with color 2, 3, \cdots , r + 1 for $1 \le i \le q$ either randomly or sequencingly but the coloring should satisfy the r-adjacency condition. Finally, color the vertex p_2 with color r + 2. Hence, $\chi_r(C_{p,q}) \le r + 2$. Therefore, $\chi_r(C_{p,q}) = r + 2$.

Lemma 3. Let TS_n , be the Triangle snake graph. The lower bound for r - dynamic chromatic number of Triangle snake graph is

 $\chi_r[TS_n] \ge \begin{cases} \delta + 1, & 1 \le r \le \delta \\ \Delta + 1, \delta + 1 \le r \le \Delta \end{cases}$

Proof: Let $V(TS_n) = \{u_i : 1 \le i \le n - 1\} \cup \{u_{ii+1} : 1 \le i \le n - 2\}$ where u_i are the vertices of path P_{n-1} and u_{ii+1} are the vertices corresponding to the edges u_i and u_{i+1} . Thus the minimum degree of TS_n are 2 and the maximum degree is 4. For $1 \le r \le \delta$, the vertices $V = u_{12}, u_1, u_2$ persuade a clique of order $\delta + 1$ in (TS_n) . Thus, $\chi_r[TS_n] \ge \delta + 1$. Thus for $\delta + 1 \le r \le \Delta$ based on Lemma 1, we have

 $\chi_r[TS_n] \ge \min\{r, \Delta[TS_n]\} = \Delta + 1$. Thus, it completes the proof.

Theorem 3. For $n \ge 3$, n is odd the r- dynamic coloring of the Triangle snake graph TS_n are

$$\chi_r[TS_n] \ge \begin{cases} 3, & 1 \le r \le \delta \\ \Delta + 1, \delta + 1 \le r \le \Delta \end{cases}$$

Proof: The upper bound for Triangle snake graph are illustrated in following cases:

Case : **1**
$$1 \le r \le \delta$$

Based on the Lemma 3 the lower bound of TS_n are $\chi_r(TS_n) \ge 3$. To find the upper bound we consider the following coloring: color the vertices u_i with color 1 and 2 alternatively for $1 \le i \le n-1$. Then color the remaining vertices u_{ii+1} with single color 3 for $1 \le i \le n-2$. Thus we have $\chi_r(TS_n) \le 3$. Therefore, $\chi_r(TS_n) = 3$.

Case: 2 $\delta + 1 \leq r \leq \Delta$

- Based on the Lemma 3 the lower bound of TS_n are $\chi_r(TS_n) \ge 4$. To find the upper bound we consider the following coloring: when r = 3, color the vertices u_i with color 1,2 and 3 orderly for $1 \le i \le n - 1$ and finally color the last set of vertices u_{ii+1} with color 4 for $1 \le i \le n - 2$. Therefore, $\chi_r(TS_n) \le 4$. $\chi_r(TS_n) = 4$.
- Based on the Lemma 3 the lower bound of TS_n are $\chi_r(TS_n) \ge r + 1$. To find the upper bound we consider the following coloring: when r = 4, color the vertices u_i with the colors as given in the r = 3.

Next, color the vertices u_{ii+1} with color 4 and 5 alternatively for $1 \le i \le n - 2$. Therefore, $\chi_r(TS_n) \le 5$. Thus we have obtained r + 1 colors. Hence, we have $\chi_r(TS_n) \le r + 1$. $\chi_r(TS_n) = r + 1$.

Theorem 4. For $q \ge 4$, q is even the r - dynamic coloring of the Crossed prism graph CP_q are

$$\chi_{r}[CP_{q}] = \begin{cases} 2, for r = 1 \\ 4, for 2 \le r \le \Delta, q \equiv 0 \pmod{4} \\ 3, for r = 2, q \ne 1 \pmod{3} \\ 4, for r = 2, q \equiv 1 \pmod{3} \\ 5, for r \ge \Delta, q \equiv 0 \pmod{4} \\ 6, for r \ge \Delta, q = 60L + 6, L \in W \end{cases}$$

Proof: The vertex set $V(CP_q) = \{t_i : 1 \le i \le q\} \cup \{x_j : 1 \le j \le q\}$ where t_i are the inner cycle of crossed prism and x_j is the outer cycle. The edges are crossed between the vertices t_i and x_{j+1} for i is odd, and the next set of edges are crosses between t_i and x_{j-1} for i is even. The maximum and minimum degree of CP_q are $\delta = \Delta = 3$. Since q is even, we get q/2 set of crossed vertices. Here t_1 is the second vertex of first crossed prism and t_2 is the first vertex of second crossed prism. It continues upto q. Similarly, it is same as for x_j .

Case: 1 *r* = 1

Color the vertices t_i and x_j with color 1 and 2 alternatively for $1 \le i \le q$. Thus $\chi_r(CP_q) \le 2$. Based on the Lemma 1 the lower bound for CP_q are $\chi_r(CP_q) \ge 2$. Therefore, $\chi_r(CP_q) = 2$. **Case:** $2 \le r \le \Delta, q \equiv 0 \pmod{4}$

Color the vertices t_i with color 1,2,3 and 4 alternatively for $1 \le i \le q$. Next we need to color the verices x_j which is quite different since, it does not follow any order or sequencing. The coloring of the vertices x_j is dependent on the coloring of the vertices t_i . Since it is an even graph, color the vertex x_1 with the color of the vertex t_2 and color the vertex x_2 with the color of the vertex t_1 . Then, color the vertex x_3 with the color of t_4 and the vertex x_4 with the color of t_3 . By continuing this way, color the vertex x_q with color of the vertex t_{q-1} and the vertex x_{q-1} with the color of t_q . Thus the coloring are interchanged between every pair of vertices. Thence, $\chi_r(CP_q) \leq 4$. Based on the Lemma 1 the lower bound for CP_q are $\chi_r(CP_q) \geq 4$. Therefore, $\chi_r(CP_q) = 4$. **Case:** 3r = 2

Sub case: 1 $q \neq 1 \pmod{3}$, in this subcase there are two subdivisions which are as follows:

If $q \equiv 0 \pmod{3}$, color the vertices t_i with color 1,2 and 3 alternatively for $1 \leq i \leq q$. Similarly, color the vertices x_i with the colors have used in t_i $1 \leq i \leq q$. Therefore, $\chi_2(CP_q) \leq 4$.

If $q \equiv 2 \pmod{3}$, color the vertices t_i with color 1, 2 and 3 orderly for $1 \leq i \leq q - 2$. Next, color the vertex t_{q-1} with color 1_2 and color the vertex t_q with color 2. Finally, color the vertices x_j from the color 1, 2 and 3 either sequencingly or unorderly for $1 \leq j \leq q$ but with an radjacency condition. Thus, $\chi_2(CP_q) \leq 4$. Based on the Lemma 1 the lower bound for CP_q are $\chi_r(CP_q) \geq 4$. Therefore, $\chi_r(CP_q) = 4$. **Sub case** : $2 q \equiv 1 \pmod{3}$

Color the vertices t_i with colors 1,2,3 and 4 orderly for $1 \le i \le q - 2$ and color the vertex t_{q-1} with color 2 and color the vertex t_q with color 3. Next, color the vertices x_j with the same colors as given in t_i unorderly with an 2-adjacency condition. Thus, $\chi_2(CP_q) \le 4$. Based on the Lemma 1 the lower bound for CP_q are $\chi_r(CP_q) \ge 4$. Therefore, $\chi_r(CP_q) = 4$.

Case: 4 $r \ge \Delta$

• If $q \equiv 0 \pmod{4}$, then color the vertices t_i with color 1,2,3,4 and 5 for $1 \leq i \leq q$. Then the coloring of the vertices x_j is dependent on the coloring of the vertices t_i . The coloring of x_j follows the similar way as given in case-2 but with five colors. Thence, $\chi_r(CP_q) \leq 5$. Based on the Lemma 1 the lower bound for CP_q are $\chi_r(CP_q) \geq 5$. Therefore, $\chi_r(CP_q) = 5$.

• If q = 60L + 6, it is an special case of crossed prism graph, since we need to give six different colors to satisfy the Δ adjacency condition. So color the vertices t_i with color 1, 2 and 3 sequencingly for $1 \le i \le q$ and color the vertices x_j with color 4, 5 and 6 orderly for $1 \le i \le q$. Therefore, $\chi_r(CP_q) \le 6$. Based on the Lemma 1 the lower bound for CP_q are $\chi_r(CP_q) \ge 6$. Therefore, $\chi_r(CP_q) = 6$.

Lemma 4. Let H_m be the Helm graph. The lower bound for r-dynamic chromatic number of Helm graph is

$$\chi_r[H_m] \ge \begin{cases} \delta + 1, & 1 \le r \le \delta \\ \Delta + 1, \delta + 1 \le r \le \Delta \end{cases}$$

Proof: The vertices of H_m are $\{x, x_i, y_i; 1 \le i \le m\}$. *x* is the hub vertex which is connected to vertex of cycle x_i and a pendent edge is add to each vertex of x_i . The vertices at the pendent edge are named as *y*. The minimum and maximum degree of H_m are $\delta = 1$ and $\Delta = m$. For $1 \le r \le \delta$, the vertices $V = x, x_1, x_2$ persuade a clique of order $\delta + 1$ in (H_m) . Thus, $\chi_r[H_m] \ge \delta + 1$. Thus for $\delta + 1 \le r \le \Delta$ based on Lemma 1, we have $\chi_r[H_m] \ge \min\{r, \Delta[H_m]\} = \Delta + 1$. Thus, it completes the proof.

Theorem 5. For $m \ge 3$, the *r*-dynamic coloring of the Helm graph H_m are

$$\chi_r[H_m] = \begin{cases} 4, 1 \le r \le 3 \text{ and } m \text{ is odd} \\ 3, 1 \le r \le 2 \text{ and } m \text{ is even} \\ r+1, \text{ otherwise} \end{cases}$$

Proof : The upper bound for the Helm graph are obtained from the following cases:

Case: 1 $1 \le r \le 3$

Based on the Lemma 4, we have $\chi_r(H_m) \ge 4$ To find the upper bound consider the following coloring: color the vertices x_i with color 1,2 orderly for $1 \le i \le m-1$ and color the vertex x_m with color 3. Next color the vertices y_i with color 3 for $1 \le i \le m-1$ and the vertex y_m with color 1. Finally, the last vertex x with color 4. Hence, $\chi_r(H_m) \le 4$. Therefore, $\chi_r(H_m) = 4$. **Case :** $2 \ 1 \le r \le 2$

Based on the Lemma 4, we have $\chi_r(H_m) \ge 3$. To find the upper bound consider the following coloring: color the vertices x_i with color 1,2 alternatively for $1 \le i \le m$ and color the vertex y_i with color 2 and 1 orderly for $1 \le i \le m$. The color the vertex x with color 3. Hence, $\chi_r(H_m) \le 3$. Thus, $\chi_r(H_m) = 3$.

Case: 3 Otherwise

Based on the Lemma 4, we have $\chi_r(H_m) \ge 6$. To find the upper bound consider the following coloring: in this case, there is an special case that is m = 5, for r = 4,5. At this case we receives six colors. i.e., color the vertices x_i with five different colors for $1 \le i \le m$. Similarly, color the vertices y_i with the same colors as given in x_i but in different order with 4, 5-adjacency condition and color the vertex x with color 6. Hence, $\chi_r(H_m) \le 6$. Thus, $\chi_r(H_m) = 6$.

Based on the Lemma 4, we have $\chi_r(H_m) \ge 5$. To find the upper bound consider the following coloring: next is to receive r + 1 colors, at r = 4and $m \ne 5$ color the vertices x_i and y_i for $1 \le i \le m$ with colors 1,2,3,4 either orderly or unorderly but with 4- adjacency condition. Even though there is four different colors we also need one more color to satisfy 4- adjacency condition. So color the vertex x with color 5. Therefore, $\chi_r(H_m) \le 5$. Thus, $\chi_r(H_m) = 5$.

Based on the Lemma 4, we have $\chi_r(H_m) \ge r + 1$. To find the upper bound consider the following coloring: next at r = 5, color the vertices x_i and y_i for $1 \le i \le m$ with colors 1,2,3,4 either orderly or unorderly but with 5-adjacency condition. Here also we need one more color, so color the vertex x with color 6. Therefore, $\chi_r(H_m) \le 6$. Thus, proceeding by this way, at r = m color the vertices x_i and y_i for $1 \le i \le m$ with colors 1,2,..., m but with r-adjacency condition. Atlast color the hub vertex x with color m+1. Thus, $\chi_r(H_m) \le m + 1$. Therefore, $\chi_r(H_m) \le r + 1$. Thus, $\chi_r(H_m) = r + 1$.

REFERENCES

[1] S. Akbari, M. Ghanbari and S. Jahanbekam, (2009). On the list dynamic coloring of graphs, *Discrete Applied Mathematics* 157(14): 3005-3007.

- [2] H. Agustin, D. Dafik and A.Y. Harsya, (2016). On r-dynamic coloring of some graph operations, *Indonesian Journal of Combinatorics* 1(1): 22-30.
- [3] H. Furmanczyk, J. Vernold Vivin and N. Mohanapriya, (2018). r-Dynamic chromatic number of some line graphs. *Indian Journal of Pure and Applied Mathematics* 49(4): 591-600.
- [4] S. Jahanbekam, J. Kim, O. Suil and D. B. West, (2016). On r-dynamic coloring of graphs, *Discrete Applied Mathematics*, 206: 65-72.
- [5] N. Mohanapriya, G. Nandini, М. (2018). *δ* Dynamic Venkatachalam, -Chromatic number of Double Wheel Graph Families. International Journal of Open Problems in Computer Science and Mathematics 11(4)
- [6] B. Montgomery, (2001). Dynamic coloring of graphs,
- [7] I. Muhammad, A. Q. Baig and M. Town, (2013). Vertex irregular total labeling of cubic graphs, *Utilitas Mathematica* 91:287-299.

About The License

The text of this article is licensed under a Creative Commons Attribution 4.0 International License