ISSN 2349-2694, All Rights Reserved, https://www.krjournal.com

RESEARCH ARTICLE

ON *r* - DYNAMIC COLORING OF SOME GRAPHS V. Aparna and N. Mohanapriya*

PG and Research Department of Mathematics, Kongunadu Arts and Science College (Autonomous), Coimbatore-641029, Tamil Nadu, India

ABSTRACT

The *r*-dynamic coloring of a graph *H* is a proper p-coloring of the vertices of the graph *H* so that for every vertex $a \in V(H)$ has neighbors in atleast $min\{r, d(a)\}$ distinct classes of color. The least *p* which provides *H* an *r*-dynamic coloring with *p* colors is known as *r*-dynamic chromatic number of the graph *H* and it is denoted as $\chi_r(H)$. In this paper, we have attained the lower, upper bound and exact *r*-dynamic chromatic number for cocktail party graph Cp_s , *s*-barbell graph Ba_s , windmill graph W_s^q , book graph B_s and pencil graph Pc_s .

Mathematics subject classification: 05C15

Keywords: r-dynamic coloring; cocktail party graph Cp_s ; *s*-barbell graph Ba_s ; windmill graph W_s^q ; book graph B_s ; pencil graph Pc_s .

1. INTRODUCTION

Throughout we take into account simple, finite and connected graphs. Montgomery was the pioneer in dynamic coloring. Dynamic coloring [1, 2, 3, 5, 9, 10] of a graph is proper coloring of *H* so that each and every vertex $a \in V(H)$ has neighbors in atleast two different classes of color. And its generalized version is *r*-dynamic coloring. A mapping $c : V(H) \rightarrow Q$, the set of colors with Q = |p|, is known as *r*-dynamic coloring if the following two rules holds:

1) $c(a) \neq c(z)$ for $az \in E(G)$ and

2) $|c(N(z))| \ge min\{r, d(z)\}$, for each and every $z \in V(H)$ where N(z) denotes the set of neighbors of z, r is a positive integer and d(z) is the degree of the vertex z in H.

The first rule is an indication for proper coloring and the second rule is the *r*-adjacency condition. The *r*-dynamic chromatic number is the least *p* that allows *H* an *r*-dynamic coloring with *p* colors and it is denoted as $\chi_r(H)$. The *r*-dynamic chromatic number does not differ once *r* reaches the saturation value Δ . There are many open problems one among them was conjectured by Montgomery which states for regular graphs the result $\chi_r(H) \leq \chi_r(H) + 2$. Graph coloring is one among the most challenging problems in mathematics and has many real-life applications.

2. PRELIMINARIES

[7] The **Cocktail Party Graph** Cp_s is a graph with s = 2q vertices $a_j, j = 1, 2, ..., 2q$ with a_j non-adjacent to a_{j+q} and adjacent to all other vertices.

[4] The *s*- **Barbell Graph** Ba_s is attained by connecting two copies of complete graph K_s by a bridge. Here, we are connecting the first two vertices of K_s by a bridge.

[12] The **Windmill Graph** W_s^q with $q, s \ge 2$ is constructed by considering q copies of the complete graph K_s with a universal vertex (common vertex). When q = 2 and q = 3 i.e., W_s^2 and W_s^3 they are the star graph and friendship graph respectively.

[8] The **Book Graph** B_s is the Cartesian product of star graph $K_{1,s}$ and path P_2 i.e., $K_{1,s} \times P_2$.

[6] For $s \ge 2$, the **Pencil Graph** Pc_s is a graph with 2s + 2 vertices where the vertex set is $\{a_q, b_q : q = 0, 1, ..., s\}$ and edge set $\{a_q a_{q+1}, b_q b_{q+1} : q = 1, 2, ..., s - 1\} \cup \{a_0 a_1, a_0 b_1, b_0 a_s, b_0 b_s\} \cup \{a_q b_q : q = 0, 1, ..., s\}.$

^{*}Correspondence: N. Mohanapriya, PG and Research Department of Mathematics, Kongunadu Arts and Science College, Coimbatore – 641 029, Tamil Nadu, India. E.mail: n.mohanamaths@gmail.com

3. OBSERVATIONS

Lemma 3.1. $\chi_r(H) \ge min\{r, \Delta(H)\} + 1$ is a lemma providing the lower bound for *r*-dynamic chromatic number found by Montgomery and Lai [9].

Note 3.2. We can observe easily from the graph Cp_s that there is a clique of order $\frac{s}{2} = q$ hence $\chi_r(Cp_s) \ge q$.

Note 3.3. From the definition of Ba_s and W_s^q there is a maximal complete subgraph of order *s* hence $\chi_r(Ba_s) \ge s$ and $\chi_r(W_s^q) \ge s$.

4. RESULTS

Lemma 4.1. For $q \ge 2$, the lower bound for *r*dynamic chromatic number of cocktail party graph Cp_s is, $\chi_r(Cp_s) \ge \begin{cases} q, 1 \le r \le q-1 \\ r+1, q \le r \le \Delta(Cp_s) \end{cases}$ *Proof. The cocktail party graph is* Cp_s is regular

graph with degree 2(q - 1). Then $V(Cp_s) = \{a_j, j = 1, 2, ..., 2q\}$ and $E(Cp_s) = \{a_ja_k: j, k = 1, 2, ..., 2q \text{ where } j \neq k = j + q\}$. Also, $\delta(Cp_s) = \Delta(Cp_s) = 2(q - 1)$. The order of Cp_s is $|V(Cp_s)| = s = 2q$ and size is $|E(Cp_s)| = s(q - 1)$. By Note 3.2 we have $\chi_{1 \leq r \leq q-1}(Cp_s) \geq q$.

For $q \le r \le \Delta(Cp_s)$, by Lemma 3.1 $\chi_r(H) \ge \min\{r, \Delta(H)\} + 1$.

Therefore,

$$\chi_{q \le r \le \Delta(Cp_s)}(Cp_s) \ge \min\{r, \Delta(Cp_s)\} + 1 = r + 1.$$

Theorem 4.2. For $q \ge 2$, the *r*-dynamic chromatic number of cocktail party graph Cp_s is, $\chi_r(Cp_s) = \begin{cases} q, 1 \le r \le q-1\\ 2q, q \le r \le \Delta(Cp_s) \end{cases}$

Proof. We have two cases: $1 \le r \le q - 1$ and $q \le r \le \Delta(Cp_s)$ to consider.

Case 1: When $1 \le r \le q - 1$.

By Lemma 4.1 we have the lower bound $\chi_{1 \le r \le q-1}(Cp_s) \ge q$. Consider the map $c_1: V(Cp_s) \rightarrow \{1, 2, ..., q\}$ and coloring as follows:

$$c_1(a_j) = j, j = 1, 2, ..., q.$$

 $c_1(a_j) = k, j = q + k$ and k = 1, 2, ..., q since a_j and a_{j+q} are non-adjacent.

By the above coloring $\chi_{1 \le r \le q-1}(Cp_s) \le q$. Hence $\chi_{1 \le r \le q-1}(Cp_s) = q$.

Case 2: When $q \leq r \leq \Delta(Cp_s)$.

By Lemma 4.1 we have $\chi_{q \le r \le \Delta(Cp_s)}(Cp_s) \ge r + 1$ but inorder to satisfy the *r*-adjacency condition we require 2q colors in total hence we the lower bound have $\chi_{q \le r \le \Delta(Cp_s)}(Cp_s) \ge 2q$. The upper bound is given by the coloring below considering the mapping $c_2: V(Cp_s) \to \{1, 2, ..., 2q\}$. $c_1(a_i) = j, j =$

1,2, ...,2q and
$$\chi_{q \leq r \leq \Delta(Cp_s)}(Cp_s)$$

Therefore,
$$\chi_{q \le r \le \Delta(Cp_s)}(Cp_s) = 2q$$
.

Lemma 4.3. For $s \ge 2$, the lower bound for *r*dynamic chromatic number of barbell graph Ba_s is, $(s, 1 \le r \le s - 1)$

 $\leq 2q$.

$$\chi_r(Ba_s) \ge \begin{cases} s, 1 \le r \le s - \\ s+1, r \ge \Delta(Ba_s) \end{cases}$$

Proof. The vertex set of barbell graph $V(Ba_s) = \{a_j, b_j : 1 \le j \le s\}$. Here we assume that the vertices a_1 and b_1 are adjacent by a bridge and $E(Ba_s) = \{a_j a_k, b_j b_k : j, d_j\}$

k = 1, 2, ..., s and

 $j \neq k$ $\bigcup \{a_1b_1\}$. Also, $\delta(Ba_s) = s - 1$ and $\Delta(Ba_s) = d(a_1) = d(b_1) = s$. And , order of Ba_s is $|V(Ba_s)| = 2s$ and size is $|E(Ba_s)| = s^2 - s + 1$.

By Note 3.3 we have $\chi_{1 \leq r \leq s-1}(Ba_s) \geq s$. For $r \geq \Delta(Ba_s)$, by Lemma 3.1 $\chi_r(H) \geq min\{r, \Delta(H)\} + 1$. Therefore,

$$\chi_{r \ge \Delta(Ba_s)}(Ba_s) \ge \min\{r, \Delta(Ba_s)\} + 1 = \Delta(Ba_s) + 1 = s + 1.$$

Theorem 4.4. For $s \ge 2$, the *r*-dynamic chromatic number of barbell graph Ba_s is, $\chi_r(Ba_s) = \begin{cases} s, 1 \le r \le s-1 \\ s+1, r = \Delta(Ba_s) \end{cases}$

Proof. We have two cases: $1 \le r \le s - 1$ and $r = \Delta(Ba_s)$ to consider.

Case 1: When $1 \le r \le s - 1$.

By Lemma 4.3 we have the lower bound $\chi_{1 \le r \le s-1}(Ba_s) \ge s$. The coloring is provided by the mapping $c_3: V(Ba_s) \to \{1, 2, ..., s\}$ as follows:

 $c_{3}(a_{1}, a_{2}, ..., a_{s}) = \{1, 2, ..., s\}.$ $c_{3}(b_{1}, b_{2}, ..., b_{s}) = \{2, 3, ..., s, 1\}.$ By the above coloring $\chi_{1 \le r \le s-1}(Ba_{s}) \le s$. Hence $\chi_{1 \le r \le s-1}(Ba_{s}) = s$. **Case 2:** When $r = \Delta(Ba_s)$. By Lemma 4.3 we have the lower bound $\chi_{r=\Delta(Ba_s)}(Ba_s) \ge s + 1$. The upper bound is given by the coloring below considering the mapping $c_4: V(Ba_s) \rightarrow \{1, \dots, s + 1\}$. $c_4(a_1, a_2, \dots, a_s) = \{1, 2, \dots, s\}$ $c_4(b_1) = s + 1$ and $c_3(b_2, b_3, \dots, b_s) = \{2, 3, \dots, s\}$. $\chi_{r=\Delta(Ba_s)}(Ba_s) \le s + 1$. Therefore, $\chi_{r=\Delta(Ba_s)}(Ba_s) = s + 1$.

Lemma 4.5. For $q, s \ge 2$, the lower bound for rdynamic chromatic number of windmill graph W_s^q is, $\chi_r(W_s^q) \ge \begin{cases} s, 1 \le r \le s - 1 \\ r + 1, s \le r \le \Delta(W_s^q) \end{cases}$ Proof. The vertex set of windmill graph $V(W_s^q) =$ $\{a_0\} \cup \{a_{i,1}, a_{i,2}, \dots, a_{i,s-1} : 1 \le j \le q\}$ where a_0 is universal vertex adjacent to all other vertices $\{a_{j,k} : 1 \le j \le q \text{ and } 1 \le k \le s - 1\}$. Edge set is $E(W_s^q) = \{a_{i,k}a_{i,i} : k \neq i \& 1 \le i \}$ $i \le q \text{ and } 1 \le k, i \le s - 1 \} \cup \{a_0 a_{i,k} :$ $1 \leq j \leq q \text{ and } 1 \leq k \leq s - 1$ Also, . $\delta(W_s^q) = s - 1$ and $\Delta(W_s^q) = d(a_0) =$ q(s-1). And, order of W_s^q is $|V(W_s^q)| =$ q(s-1) + 1 and size is $|E(W_s^q)| = \frac{qs(s-1)}{2}$. By Note 3.3 we have $\chi_{1 \le r \le s-1}(W_s^q) \ge s$. For $s \leq r \leq \Delta(W_s^q)$, by Lemma 3.1 $\chi_r(H) \geq$ $min\{r, \Delta(H)\} + 1.$ Therefore,

$$\chi_{s \le r \le \Delta(W_s^q)}(W_s^q) \ge \min\{r, \Delta(W_s^q)\} + 1 = r + 1.$$

Theorem 4.6. For $q, s \ge 2$, the *r*-dynamic chromatic number of windmill graph W_s^q is, $\chi_r(W_s^q) = \begin{cases} s, 1 \le r \le s - 1 \\ r+1, s \le r \le \Delta(W_s^q) \end{cases}$ *Proof. We have two cases:* $1 \le r \le s - 1$ and $s \le r \le \Delta(W_s^q)$ to consider. **Case 1:** When $1 \le r \le s - 1$. By Lemma 4.5 we have the lower bound $\chi_{1\le r\le s-1}(W_s^q) \ge$ *s.* The coloring is provided by the map $c_5: V(W_s^q) \to \{1, 2, \dots, s\}$ as follows:

 $c_5(a_0) = 1.$ $c_5(a_{i,1}, a_{i,2}, \dots, a_{i,s-1}) = \{2, 3, \dots, s\}$ for $1 \leq j \leq q$. By the above coloring $\chi_{1 \le r \le s-1}(W_s^q) \le s$. Hence $\chi_{1 \le r \le s-1} (W_s^q) = s.$ **Case 2:** When $s \leq r \leq \Delta(W_s^q)$. By Lemma 4.5 we have $\chi_{s \le r \le \Delta(W_s^q)}(W_s^q) \ge r +$ 1. The upper bound is given by the coloring below considering mapping $c: V(W_s^q) \rightarrow$ the $\{1, 2, \ldots, r+1\}$ for different stages of r. $c(a_0) = 1$ for all cases of r. When r = s. $c(a_{1,1}, a_{1,2}, \dots, a_{1,s-1}) = \{2, 3, \dots, s\}$ $c(a_{2,1}, a_{2,2}, \dots, a_{2,s-1}) = \{s+1, 3, 4, \dots, s\}$ $c(a_{j,1}, a_{j,2}, \dots, a_{j,s-1}) = \{2, 3, \dots, s\}$ for 3 $\leq j \leq q$ Hence $\chi_{r=s}(W_s^q) \leq s+1$. When r = s+1. $c(a_{2,1}, a_{2,2}, \ldots, a_{2,s-1})$ $= \{s + 1, s + 2, 4, \dots, s\}$ $c(a_{j,1}, a_{j,2}, \dots, a_{j,s-1}) = \{2, 3, \dots, s\}$ for 1 $\leq j \leq q$ and $j \neq 2$. Hence $\chi_{r=s+1}(W_s^q) \leq s+2.$

Proceeding like this at each stage of r we introduce the color r+1 to the next vertex in the list till $a_{j,s-1}$. Hence $\chi_{s \le r \le \Delta(W_s^q)}(W_s^q) \le r+1$. Therefore, $\chi_{s \le r \le \Delta(W_s^q)}(W_s^q) = r+1$.

Lemma 4.7. For $s \ge 2$, the lower bound for *r*-dynamic chromatic number of book graph B_s is, $\chi_r(B_s) \ge \begin{cases} 2, r = 1 \\ r+1, 2 \le r \le \Delta(B_s) \end{cases}$

Proof. The vertex set of book graph $V(B_s) = \{b_{1,j}, b_{2,j}, x, y: 1 \le j \le s\}$ and edge set $E(B_s) = \{xb_{1,j}, yb_{2,j}, b_{1,j}b_{2,j}: 1 \le j \le s\}$. Also, $\delta(B_s) = 2$ and $\Delta(B_s) = d(x) = d(y) = s$. And, order of B_s is $|V(B_s)| = 2s + 2$ and size is $|E(B_s)| = 3s$. Since the maximal complete subgraph is of order 2 we

have $\chi_{r=1}(Ba_s) \ge 2$. For $2 \le r \le \Delta(B_s)$, by Lemma 3.1 $\chi_r(H) \ge min\{r, \Delta(H)\} + 1$. Therefore, $\chi_{2 \le r \le \Delta(B_s)}(B_s) \ge min\{r, \Delta(Ba_s)\} + 1 = r + 1$. **Theorem 4.8.** For $s \ge 2$, the *r*-dynamic chromatic number of book graph B_s *is*, $\chi_r(B_s) =$

$$\begin{cases} 2, r = 1 \\ 4, r = 2,3 \\ r + 1,4 \le r \le \Delta(B_s) \end{cases}$$

Proof. We have two cases: $r = 1, r = 2, 3$ and $4 \le r \le \Delta(B_s)$.

Case 1: When r = 1.

By Lemma 4.7 we have the lower bound $\chi_1(Ba_s) \ge 2$. The coloring is provided by the map

 $c_6: V(B_s) \rightarrow \{1,2\}$ as follows: $c_6(x) = 1$ and $c_6(y) = 2$. $c_6(b_{1,j}) = 2$ and $c_6(b_{2,j}) = 1$ for $1 \le j \le s$. By the above coloring $\chi_1(B_s) \le 2$. Hence $\chi_1(B_s) = 2$.

Case 2: When r = 2,3.

By Lemma 4.7 we have the lower bound $\chi_{r=2}(B_s) \ge r+1=3$. But since there is presence of C_4 in B_s which leads to the need of an extra color when r=2. So, the lower bound becomes $\chi_{r=2}(B_s) \ge 4$ and by the same lemma we have the lower bound $\chi_{r=3}(B_s) \ge r+1=4$. Now we assign coloring by the mapping c_7 : $V(B_s) \rightarrow \{1,2,3,4\}$.

 $c_{7}(x) = 1 \text{ and } c_{7}(y) = 2.$ $c_{7}(b_{1,j}) = \begin{cases} 3, j \text{ is odd} \\ 4, j \text{ is even} \end{cases} \text{ and } c_{7}(b_{2,j}) = \begin{cases} 4, j \text{ is odd} \\ 3, j \text{ is even} \end{cases}$

For r = 3 the coloring provided above is sufficient. So, we have the upper bound $\chi_{r=2,3}(B_s) \le 4$. Therefore, $\chi_{r=2,3}(B_s) = 4$. **Case 3:** When $4 \le r \le \Delta(B_s)$.

By Lemma 4.7 we have the lower bound

 $\chi_{4 \le r \le \Delta(B_S)}(B_S) \ge r+1$. Consider the mapping

+

 $c: V(B_s) \rightarrow \{1, 2, \dots, r+1\}$ which gives the coloring for the vertices.

$$c(x) = 1 \text{ and } c(y) = 2.$$

$$c(b_{1,1}, b_{1,2}, \dots, b_{1,s}) = \{3, 4, \dots, r$$

$$1, \quad \underbrace{3, 4, \dots}_{s-(r-1) \text{ terms}} \}.$$

$$c(b_{2,1}, b_{2,2}, \dots, b_{2,s}) = \{4, \dots, r + 1, 2, \dots, r + 1, \dots, r + 1,$$

1, 3, $\underbrace{4, 5, \ldots}_{s-(r-1) \ terms}$ }.

Hence $\chi_{4 \le r \le \Delta(B_s)}(B_s) \le r + 1$. Therefore, we have $\chi_{4 \le r \le \Delta(B_s)}(B_s) = r + 1$.

Lemma 4.9. For $s \ge 2$, the lower bound for *r*-dynamic chromatic number of pencil graph Pc_s is,

$$\chi_r(Pc_s) \ge \begin{cases} 3, r = 1, 2 \\ 4, r \ge \Delta(Pc_s) \end{cases}$$

Proof. The pencil graph Pc_s is a regular graph with degree 3. The vertex set is defined as $\{a_q, b_q : q = 0, 1, ..., s\}$ and edge set $\{a_q a_{q+1}, b_q b_{q+1} : q = 1, 2, ..., s - 1\} \cup \{a_0 a_1, a_0 b_1, b_0 a_s, b_0 b_s\} \cup \{a_q b_q : q = 0, 1, ..., s\}$. Also, $\delta(Pc_s) = \Delta(Pc_s) = 3$. And, order of Pc_s is

 $|V(Pc_s)| = 2s + 2$ and size is $|E(Pc_s)| = 3(s + 1)$. There is a clique of order 3 we have $\chi_{r=1,2}(Pc_s) \ge 1$

3. For $r \ge \Delta(Pc_s)$, by Lemma 3.1 $\chi_r(H) \ge$

 $\min\{r, \Delta(H)\} + 1.$ Therefore, $\chi_{r \ge \Delta(Pc_s)}(B_s) \ge \min\{r, \Delta(Pc_s)\} +$ $1 = \Delta(Pc_s) + 1 = 4.$

Theorem 4.10. For $s \ge 2$, the *r*-dynamic chromatic number of pencil graph Pc_s is, $\chi_r(Pc_s) = \begin{cases} 3, r = 1, 2 \ s \equiv 0, 2 \pmod{3}, \\ r = 1 \ and \ s \equiv 1 \pmod{3} \\ 4, r = 2 \ and \ s \equiv 1 \pmod{3} \\ 5, r = 3 \ and \ s \equiv 0 \pmod{4} \\ 6, \ r = 3 \ and \ otherwise \end{cases}$

Proof. We have four cases to consider here.

Case 1: When $r = 1,2 \text{ and } s \equiv 0,2 \pmod{3}, r = 1 \text{ and } s \equiv 1 \pmod{3}$. **Subcase 1:** When $r = 1,2 \text{ and } s \equiv 0,2 \pmod{3}$ By Lemma 4.9 we have the lower bound $\chi_{r=1,2}(Pc_s) \ge 3$. For upper bound consider the map $c_8: V(Pc_s) \rightarrow \{1,2,3\}$. $c_8(a_0) = 3$ $c_8(a_1, a_2, ..., a_s) = \{1, 2, 3, 1, 2, 3, ..., 1, 2, 3\}$ when $s \equiv 0 \pmod{3}$ $c_8(a_1, a_2, ..., a_s) = \{1, 2, 3, 1, 2, 3, ..., 1, 2\}$ when $s \equiv 2 \pmod{3}$ $c_8(b_1, b_2, ..., b_s) = \{3, 2, 1, 3, 2, 1, ..., 3, 2, 1\}$ when $s \equiv 0 \pmod{3}$

 $c_8(b_1, b_2, \dots, b_s) = \{3, 2, 1, 3, 2, 1, \dots, 3, 2\}$ when $s \equiv 2 \pmod{3}$ $c_8(b_0) = \begin{cases} 2, when \ s \equiv 0 \pmod{3} \\ 1, when \ s \equiv 2 \pmod{3} \end{cases}$ Hence $\chi_{r=1,2}(Pc_s) \leq 3$ and therefore $\chi_{r=1,2}(Pc_s) = 3$ when $s \equiv 0,2 \pmod{3}$. **Subcase 2:** When r = 1 and $s \equiv 1 \pmod{3}$. By Lemma 4.9 we have the lower bound $\chi_{r=1}(Pc_s) \geq 3$. Consider the map $c_8: V(Pc_s) \rightarrow c_8$ $\{1,2,3\}.$ $c_8(a_1, a_2, \dots, a_s) = \{1, 2, 1, 2, \dots, 1, 2\}$ when s is even $c_8(a_1, a_2, \dots, a_s) = \{1, 2, 1, 2, \dots, 1\}$ when s is odd $c_8(b_1, b_2, \dots, b_s) = \{2, 1, 2, 1, \dots, 2, 3\}$ when s is even $c_8(b_1, b_2, \dots, b_s) = \{2, 1, 2, 1, \dots, 2, 1, 3\}$ when s is odd $c_8(a_0) = 3$ and $c_8(b_0) = \begin{cases} 1, when s is even \\ 2, when s is odd \end{cases}$ Hence $\chi_{r=1}(Pc_s) \leq 3$ and therefore $\chi_{r=1}(Pc_s) = 3$ when $s \equiv 1 \pmod{3}$. **Case 2:** When r = 2 and $s \equiv 1 \pmod{3}$. By Lemma 4.9 we have the lower bound $\chi_{r=2}(Pc_s) \geq 3$. But we need an extra color when $s \equiv 1 \pmod{3}$ to satisfy *r*-adjacency condition. So, the lower bound transforms to $\chi_{r=2}(Pc_s) \geq 4$. For upper bound assign the following coloring with the mapping $c_9: V(Pc_s) \rightarrow$ provided {1,2,3,4}. $c_9(a_0) = 3$ and $c_9(b_0) = 4$ $c_9(a_1, a_2, \dots, a_s) = \{1, 2, 3, 1, 2, 3, \dots\}$ $c_9(b_1, b_2, \dots, b_s) = \{2, 3, 1, 2, 3, 1, \dots\}$ Hence $\chi_{r=2}(Pc_s) \leq 4$. Therefore, $\chi_{r=2}(Pc_s) =$ 4 when $s \equiv 1 \pmod{3}$. **Case 3:** When r = 3 and $s \equiv 0 \pmod{4}$. By Lemma 4.9 we have the lower bound $\chi_{r=3}(Pc_s) \ge r+1 = 4$. But inorder to radjacency condition we need an extra color and hence the lower bound transforms to $\chi_{r=3}(Pc_s) \ge$

Assign the coloring by the map $c_{10}: V(Pc_s) \rightarrow \{1, 2, \dots, 5\}$.

5.

 $c_{10}(a_q) =$ $1 \leq q \leq s$ For (1, when $q \equiv 1 \pmod{4}$ 4, when $q \equiv 2 \pmod{4}$ 3, when $q \equiv 3 \pmod{4}$ $c_{10}(b_a) =$ (2, when $q \equiv 0 \pmod{4}$ (2, when $q \equiv 1 \pmod{4}$ 5, when $q \equiv 2 \pmod{4}$ 1, when $q \equiv 3 \pmod{4}$ $(4, when q \equiv 0 \pmod{4})$ $c_{10}(a_0) = 3$ and $c_{10}(b_0) = 5$. Thus, the upper bound is $\chi_{r=3}(Pc_s) \leq 5$. Therefore, $\chi_{r=3}(Pc_s) = 5$. **Case 4:** When r = 3 and otherwise. By Lemma 4.9 we have the lower bound $\chi_{r=3}(Pc_s) \geq 4$. But inorder to r-adjacency condition we are forced to introduce two new colors and hence the lower bound $\chi_{r=3}(Pc_s) \ge 6$. Assign the coloring by the map $c_{11}: V(Pc_s) \rightarrow$ {1,2,...,6}. $c_{11}(a_1, a_2, \dots, a_s) = \{1, 4, 2, 5, 1, 4, 2, 5, \dots, 1\}$ when $s \equiv 1 \pmod{4}$ $c_{11}(a_1, a_2, \dots, a_s) =$ $\{1, 4, 2, 5, 1, 4, 2, 5, \dots, 1, 4\}$ when $s \equiv$ 2(mod 4) $c_{11}(a_1, a_2, \dots, a_s) =$ {1, 4, 2, 5, 1, 4, 2, 5, ..., 1, 4, 2} when $s \equiv 3 \pmod{4}$ $c_{11}(b_1, b_2, \dots, b_s) =$ $\{2, 5, 1, 4, 2, 5, 1, 4, \dots, 2\}$ when $s \equiv 1 \pmod{4}$ $c_{11}(b_1, b_2, \dots, b_s) =$ $\{2, 5, 1, 4, 2, 5, 1, 4, \dots, 2, 5\}$ when $s \equiv$ 2(mod 4) $c_{11}(b_1, b_2, \dots, b_s) =$ {2, 5, 1, 4, 2, 5, 1, 4, ..., 2, 5, 1} when $s \equiv 3 \pmod{4}$

 $c_{11}(a_0) = 3$ and $c_{11}(b_0) = 6$.

Thus, the upper bound is $\chi_{r=3}(Pc_s) \leq 6$. Therefore, $\chi_{r=3}(Pc_s) = 6$, otherwise i.e., when $s \equiv 1,2,3 \pmod{4}$.

REFERENCES

- 1. A.S. Akbari, A. Dehghana and M. Ghanbari, (2012). On the difference between chromatic and dynamic chromatic number of graphs, *Discrete Math.* 312: 2579-2583.
- 2. S. Akbari, M. Ghanbari and S. Jahanbakam, (2010). On the dynamic chromatic number of graphs, in: Combinatorics and Graphs, in: *Contemp. Math., (Amer. Math. Soc.)*, 531: 11-18.
- 3. S. Akbari, M. Ghanbari and S. Jahanbakam, (2009). On the list dynamic coloring of graphs, *Discrete Appl. Math.* 157: 3005-3007.
- 4. A. Albina and U. Mary, (2018). A Study on Dominator Coloring of Friendship and Barbell Graphs, *International Journal of Mathematics and its Applications*, 6(4): 99-105.
- 5. M. Alishahi, (2012). Dynamic chromatic number of regular graphs, *Discrete Appl. Math.* 160: 2098-2103.
- 6. N.S. Dian and A.N.M. Salman, (2015). The Rainbow (Vertex) Connection Number of Pencil Graphs, *Procedia Computer Science*, 74: 138-142.

About The License

CON Attribution 4.0 International (CC BY 4.0)

- 7. D.A. Gregory, S. McGuinness and W. Wallis, (1986). Clique Partitions of the Cocktail Party Graph, *Discrete Mathematics* 59: 267-273.
- 8. B.N. Kavitha, Indrani Pramod Kelkar and K. R. Rajanna, (2018). Perfect Domination in Book Graph and Stacked Book Graph. *International Journal of Mathematics Trends and Technology*, 56(7): 511-514.
- 9. H. J. Lai, B. Montgomery and H. Poon, (2003). Upper bounds of dynamic chromatic number. *Ars Combin.* 68: 193-201.
- 10. N. Mohanapriya, V.J. Vernold and M. Venkatachalam, (2016). On dynamic coloring of Fan graphs. *Int. J. Pure Appl. Math.* 106(8): 169-174.
- 11. P. Shiladhar, A.M. Naji and N.D. Soner, (2018). Computation of Leap Zagreb Indices of Some Windmill Graphs. *International Journal of Mathematics and its Applications* 6(2-B): 183-191.

The text of this article is licensed under a Creative Commons Attribution 4.0 International License