RESEARCH ARTICLE

ON r - DYNAMIC COLORING OF SOME GRAPHS
V. Aparna and N. Mohanapriya*
PG and Research Department of Mathematics, Kongunadu Arts and Science College (Autonomous), Coimbatore-641029, Tamil Nadu, India

Abstract

The r-dynamic coloring of a graph H is a proper p-coloring of the vertices of the graph H so that for every vertex $a \in V(H)$ has neighbors in atleast $\min \{r, d(a)\}$ distinct classes of color. The least p which provides H an r-dynamic coloring with p colors is known as r-dynamic chromatic number of the graph H and it is denoted as $\chi_{r}(H)$. In this paper, we have attained the lower, upper bound and exact r dynamic chromatic number for cocktail party graph $C p_{s}, s$-barbell graph $B a_{s}$, windmill graph W_{s}^{q}, book graph B_{s} and pencil graph $P c_{s}$.

Mathematics subject classification: 05C15

Keywords: r-dynamic coloring; cocktail party graph $C p_{s} ; s$-barbell graph $B a_{s}$; windmill graph W_{s}^{q}; book graph B_{S}; pencil graph $P c_{S}$.

1. INTRODUCTION

Throughout we take into account simple, finite and connected graphs. Montgomery was the pioneer in dynamic coloring. Dynamic coloring [1, $2,3,5,9,10$] of a graph is proper coloring of H so that each and every vertex $a \in V(H)$ has neighbors in atleast two different classes of color. And its generalized version is r-dynamic coloring. A
mapping $c: V(H) \rightarrow Q$, the set of colors with $Q=|p|$, is known as r-dynamic coloring if the following two rules holds:

1) $c(a) \neq c(z)$ for $a z \in E(G)$ and
2) $|c(N(z))| \geq \min \{r, d(z)\}$, for each and every $z \in V(H)$ where $N(z)$ denotes the set of neighbors of z, r is a positive integer and $d(z)$ is the degree of the vertex z in H.

The first rule is an indication for proper coloring and the second rule is the r-adjacency condition. The r-dynamic chromatic number is the least p that allows H an r-dynamic coloring with p colors and it is denoted as $\chi_{r}(H)$. The r dynamic chromatic number does not differ once r reaches the saturation value Δ. There are many open problems one among them was conjectured by Montgomery which states for regular graphs the result $\chi_{r}(H) \leq \chi_{r}(H)+2$. Graph coloring is one among the most challenging problems in mathematics and has many real-life applications.

2. PRELIMINARIES

[7] The Cocktail Party Graph $C p_{s}$ is a graph with $s=2 q \quad$ vertices $a_{j}, j=1,2, \ldots, 2 q$ with a_{j} non-adjacent to a_{j+q} and adjacent to all other vertices.
[4] The s - Barbell Graph $B a_{s}$ is attained by connecting two copies of complete graph K_{s} by a bridge. Here, we are connecting the first two vertices of K_{s} by a bridge.
[12] The Windmill $\operatorname{Graph} W_{s}^{q}$ with $q, s \geq 2$ is constructed by considering q copies of the complete graph K_{s} with a universal vertex (common vertex). When $q=2$ and $q=3$ i.e., W_{s}^{2} and W_{s}^{3} they are the star graph and friendship graph respectively.
[8] The Book Graph B_{S} is the Cartesian product of star graph $K_{1, s}$ and path P_{2} i.e., $K_{1, s} \times P_{2}$.
[6] For $s \geq 2$, the Pencil Graph $P c_{s}$ is a graph with $2 s+2$ vertices where the vertex set is $\left\{a_{q}, b_{q}\right.$: $q=0,1, \ldots, s\}$ and edge set $\left\{a_{q} a_{q+1}, b_{q} b_{q+1}\right.$: $q=1,2, \ldots, s-1\} \cup\left\{a_{0} a_{1}, a_{0} b_{1}\right.$, $\left.b_{0} a_{s}, b_{0} b_{s}\right\} \cup\left\{a_{q} b_{q}: q=0,1, \ldots, s\right\}$.

3. OBSERVATIONS

Lemma 3.1. $\quad \chi_{r}(H) \geq \min \{r, \Delta(H)\}+1$ is a lemma providing the lower bound for r-dynamic chromatic number found by Montgomery and Lai [9].
Note 3.2. We can observe easily from the graph $C p_{s}$ that there is a clique of order $\frac{\mathrm{s}}{2}=\mathrm{q}$ hence $\chi_{r}\left(C p_{s}\right) \geq q$.
Note 3.3. From the definition of $B a_{s}$ and W_{s}^{q} there is a maximal complete subgraph of order s hence $\chi_{r}\left(B a_{s}\right) \geq s$ and $\chi_{r}\left(W_{s}^{q}\right) \geq s$.

4. RESULTS

Lemma 4.1. For $q \geq 2$, the lower bound for r dynamic chromatic number of cocktail party graph $C p_{s}$ is, $\chi_{r}\left(C p_{s}\right) \geq\left\{\begin{array}{c}q, 1 \leq r \leq q-1 \\ r+1, q \leq r \leq \Delta\left(C p_{s}\right)\end{array}\right.$
Proof. The cocktail party graph is $C p_{s}$ is regular graph with degree $2(\mathrm{q}-1)$. Then $V\left(C p_{s}\right)=$ $\left\{a_{j}, j=1,2, \ldots, 2 q\right\} \quad$ and $\quad E\left(C p_{s}\right)=$ $\left\{a_{j} a_{k}: j, k=1,2, \ldots, 2 q\right.$ where $j \neq k=j+$ $q\}$. Also, $\delta\left(C p_{s}\right)=\Delta\left(C p_{s}\right)=2(\mathrm{q}-1)$. The order of $C p_{s}$ is $\left|V\left(C p_{s}\right)\right|=\mathrm{s}=2 \mathrm{q}$ and size is $\left|E\left(C p_{s}\right)\right|=\mathrm{s}(\mathrm{q}-1)$.
By Note 3.2 we have $\chi_{1 \leq r \leq q-1}\left(C p_{s}\right) \geq q$.
For $q \leq r \leq \Delta\left(C p_{s}\right)$, by Lemma $3.1 \chi_{r}(H) \geq$ $\min \{r, \Delta(H)\}+1$.
Therefore,

$$
\begin{aligned}
& \chi_{q \leq r \leq \Delta\left(C p_{s}\right)}\left(C p_{s}\right) \geq \min \left\{r, \Delta\left(C p_{s}\right)\right\}+ \\
& 1=r+1
\end{aligned}
$$

Theorem 4.2. For $q \geq 2$, the r-dynamic chromatic number of cocktail party graph $C p_{s}$ is, $\chi_{r}\left(C p_{s}\right)=\left\{\begin{array}{c}q, 1 \leq r \leq q-1 \\ 2 q, q \leq r \leq \Delta\left(C p_{s}\right)\end{array}\right.$
Proof. We have two cases: $1 \leq r \leq q-1$ and $q \leq r \leq \Delta\left(C p_{s}\right)$ to consider.
Case 1: When $1 \leq r \leq q-1$.
By Lemma 4.1 we have the lower bound $\chi_{1 \leq r \leq q-1}\left(C p_{s}\right) \geq q$. Consider the map $c_{1}: V\left(C p_{s}\right) \rightarrow\{1,2, \ldots, q\}$ and coloring as follows:
$c_{1}\left(a_{j}\right)=j, j=1,2, \ldots, q$.
$c_{1}\left(a_{j}\right)=k, j=q+k$ and $k=1,2, \ldots, q$ since a_{j} and a_{j+q} are non-adjacent.
By the above coloring $\chi_{1 \leq r \leq q-1}\left(C p_{s}\right) \leq q$. Hence $\chi_{1 \leq r \leq q-1}\left(C p_{s}\right)=q$.

Case 2: When $q \leq r \leq \Delta\left(C p_{s}\right)$.
By Lemma 4.1 we have $\chi_{q \leq r \leq \Delta\left(C p_{s}\right)}\left(C p_{s}\right) \geq r+$ 1 but inorder to satisfy the r-adjacency condition we require 2 q colors in total hence we the lower bound have $\chi_{q \leq r \leq \Delta\left(C p_{s}\right)}\left(C p_{s}\right) \geq 2 q$. The upper bound is given by the coloring below considering the mapping $c_{2}: V\left(C p_{s}\right) \rightarrow\{1,2, \ldots, 2 q\}$.
$c_{1}\left(a_{j}\right)=j, j=$
$1,2, \ldots, 2 q$ and $\chi_{q \leq r \leq \Delta\left(C p_{s}\right)}\left(C p_{s}\right) \leq 2 q$.
Therefore, $\chi_{q \leq r \leq \Delta\left(C p_{s}\right)}\left(C p_{s}\right)=2 q$.
Lemma 4.3. For $s \geq 2$, the lower bound for r dynamic chromatic number of barbell graph $B a_{s}$ is,
$\chi_{r}\left(B a_{s}\right) \geq\left\{\begin{aligned} s, 1 & \leq r \leq s-1 \\ s+1, r & \geq \Delta\left(B a_{s}\right)\end{aligned}\right.$
Proof. The vertex set of barbell graph $V\left(B a_{s}\right)=$ $\left\{a_{j}, b_{j}: 1 \leq j \leq s\right\}$. Here we assume that the vertices a_{1} and b_{1} are adjacent by a bridge and $E\left(B a_{s}\right)=\left\{a_{j} a_{k}, b_{j} b_{k}: \mathrm{j}\right.$,
$\mathrm{k}=1,2, \ldots, \mathrm{~s}$ and
$\mathrm{j} \neq \mathrm{k}\} \cup\left\{a_{1} b_{1}\right\} \quad . \quad$ Also, $\quad \delta\left(B a_{s}\right)=\mathrm{s}-$ 1 and $\Delta\left(B a_{s}\right)=\mathrm{d}\left(a_{1}\right)=\mathrm{d}\left(b_{1}\right)=\mathrm{s}$. And , order of $B a_{s}$ is $\left|V\left(B a_{s}\right)\right|=2 \mathrm{~s}$ and size is $\left|E\left(B a_{s}\right)\right|=\mathrm{s}^{2}-\mathrm{s}+1$.
By Note 3.3 we have $\chi_{1 \leq r \leq s-1}\left(B a_{s}\right) \geq s$.
For $r \geq \Delta\left(B a_{s}\right)$, by Lemma $3.1 \quad \chi_{r}(H) \geq$ $\min \{r, \Delta(H)\}+1$.
Therefore,

$$
\begin{aligned}
& \chi_{r \geq \Delta\left(B a_{s}\right)}\left(B a_{s}\right) \geq \min \left\{r, \Delta\left(B a_{s}\right)\right\}+ \\
& 1=\Delta\left(B a_{s}\right)+1=s+1 .
\end{aligned}
$$

Theorem 4.4. For $s \geq 2$, the r-dynamic chromatic number of barbell graph $B a_{s}$ is, $\chi_{r}\left(B a_{s}\right)=$ $\left\{\begin{aligned} s, 1 & \leq r \leq s-1 \\ s+1, r & =\Delta\left(B a_{s}\right)\end{aligned}\right.$
Proof. We have two cases: $1 \leq r \leq s-1$ and $r=\Delta\left(B a_{s}\right)$ to consider.
Case 1: When $1 \leq r \leq s-1$.
By Lemma 4.3 we have the lower bound $\chi_{1 \leq r \leq s-1}\left(B a_{s}\right) \geq s$. The coloring is provided by the mapping $c_{3}: V\left(B a_{s}\right) \rightarrow\{1,2, \ldots, s\}$ as follows:
$c_{3}\left(a_{1}, a_{2}, \ldots, a_{s}\right)=\{1,2, \ldots, s\}$.
$c_{3}\left(b_{1}, b_{2}, \ldots, b_{s}\right)=\{2,3, \ldots, s, 1\}$.
By the above coloring $\chi_{1 \leq r \leq s-1}\left(B a_{s}\right) \leq s$.
Hence $\chi_{1 \leq r \leq s-1}\left(B a_{s}\right)=s$.

Case 2: When $r=\Delta\left(B a_{s}\right)$.
By Lemma 4.3 we have the lower bound $\chi_{r=\Delta\left(B a_{s}\right)}\left(B a_{s}\right) \geq s+1$. The upper bound is given by the coloring below considering the mapping $c_{4}: V\left(B a_{s}\right) \rightarrow\{1, \ldots, s+1\}$.
$c_{4}\left(a_{1}, a_{2}, \ldots, a_{s}\right)=\{1,2, \ldots, s\}$
$c_{4}\left(b_{1}\right)=s+1 \quad$ and $\quad c_{3}\left(b_{2}, b_{3}, \ldots, b_{s}\right)=$ $\{2,3, \ldots, s\}$.
$\chi_{r=\Delta\left(B a_{s}\right)}\left(B a_{s}\right) \leq s+1$.
Therefore, $\chi_{r=\Delta\left(B a_{s}\right)}\left(B a_{s}\right)=s+1$.
Lemma 4.5. For $q, s \geq 2$, the lower bound for r dynamic chromatic number of windmill graph W_{s}^{q} is, $\quad \chi_{r}\left(W_{s}^{q}\right) \geq\left\{\begin{array}{c}s, 1 \leq r \leq s-1 \\ r+1, s \leq r \leq \Delta\left(W_{s}^{q}\right)\end{array}\right.$
Proof. The vertex set of windmill graph $V\left(W_{s}^{q}\right)=$ $\left\{a_{0}\right\} \cup\left\{a_{j, 1}, a_{j, 2}, \ldots, a_{j, s-1}: 1 \leq j \leq q\right\}$
where a_{0} is universal vertex adjacent to all other vertices $\left\{a_{j, k}: 1 \leq j \leq q\right.$ and $\left.1 \leq k \leq s-1\right\}$. Edge set is $E\left(W_{s}^{q}\right)=\left\{a_{j, k} a_{j, i}: \mathrm{k} \neq \mathrm{i} \& 1 \leq\right.$ $j \leq q$ and $1 \leq k, i \leq s-1\} \cup\left\{a_{0} a_{j, k}:\right.$
$1 \leq j \leq q$ and $1 \leq k \leq s-1\} \quad$. Also, $\delta\left(W_{s}^{q}\right)=\mathrm{s}-1$ and $\Delta\left(W_{s}^{q}\right)=\mathrm{d}\left(a_{0}\right)=$
$\mathrm{q}(\mathrm{s}-1)$. And, order of W_{s}^{q} is $\left|V\left(W_{s}^{q}\right)\right|=$ $\mathrm{q}(\mathrm{s}-1)+1$ and size is $\left|E\left(W_{s}^{q}\right)\right|=\frac{\mathrm{qs}(\mathrm{s}-1)}{2}$.
By Note 3.3 we have $\chi_{1 \leq r \leq s-1}\left(W_{s}^{q}\right) \geq s$.
For $s \leq r \leq \Delta\left(W_{s}^{q}\right)$, by Lemma $3.1 \chi_{r}(H) \geq$ $\min \{r, \Delta(H)\}+1$.
Therefore,

$$
\begin{aligned}
& \chi_{s \leq r \leq \Delta\left(W_{s}^{q}\right)}\left(W_{s}^{q}\right) \geq \min \left\{r, \Delta\left(W_{s}^{q}\right)\right\}+ \\
& 1=r+1
\end{aligned}
$$

Theorem 4.6. For $q, s \geq 2$, the r-dynamic chromatic number of windmill graph W_{s}^{q} is, $\chi_{r}\left(W_{s}^{q}\right)=\left\{\begin{array}{c}s, 1 \leq r \leq s-1 \\ r+1, s \leq r \leq \Delta\left(W_{s}^{q}\right)\end{array}\right.$
Proof. We have two cases: $1 \leq r \leq s-1$ and $s \leq r \leq \Delta\left(W_{s}^{q}\right)$ to consider.
Case 1: When $1 \leq r \leq s-1$.
By Lemma 4.5 we have the lower bound $\chi_{1 \leq r \leq s-1}\left(W_{s}^{q}\right) \geq$
s. The coloring is provided by the map $c_{5}: V\left(W_{s}^{q}\right) \rightarrow\{1,2, \ldots, s\}$ as follows:
$c_{5}\left(a_{0}\right)=1$.
$c_{5}\left(a_{j, 1}, a_{j, 2}, \ldots, a_{j, s-1}\right)=\{2,3, \ldots, s\} \quad$ for $1 \leq j \leq q$.
By the above coloring $\chi_{1 \leq r \leq s-1}\left(W_{s}^{q}\right) \leq s$. Hence
$\chi_{1 \leq r \leq s-1}\left(W_{s}^{q}\right)=s$.
Case 2: When $s \leq r \leq \Delta\left(W_{s}^{q}\right)$.
By Lemma 4.5 we have $\chi_{s \leq r \leq \Delta\left(W_{s}^{q}\right)}\left(W_{s}^{q}\right) \geq r+$

1. The upper bound is given by the coloring below considering the mapping $\quad c: V\left(W_{s}^{q}\right) \rightarrow$ $\{1,2, \ldots, r+1\}$ for different stages of r.
$c\left(a_{0}\right)=1$ for all cases of r.
When $r=$ s.
$c\left(a_{1,1}, a_{1,2}, \ldots, a_{1, s-1}\right)=\{2,3, \ldots, s\}$
$c\left(a_{2,1}, a_{2,2}, \ldots, a_{2, s-1}\right)=\{s+1,3,4, \ldots, s\}$
$c\left(a_{j, 1}, a_{j, 2}, \ldots, a_{j, s-1}\right)=\{2,3, \ldots, s\}$ for 3

$$
\leq j \leq q
$$

Hence $\chi_{r=s}\left(W_{s}^{q}\right) \leq s+1$.
When $r=\mathrm{s}+1$.
$c\left(a_{2,1}, a_{2,2}, \ldots, a_{2, s-1}\right)$

$$
=\{s+1, s+2,4, \ldots, s\}
$$

$c\left(a_{j, 1}, a_{j, 2}, \ldots, a_{j, s-1}\right)=\{2,3, \ldots, s\}$ for 1

$$
\leq j \leq q \text { and } j \neq 2
$$

Hence $\chi_{r=s+1}\left(W_{s}^{q}\right) \leq s+2$.
Proceeding like this at each stage of r we introduce the color $r+1$ to the next vertex in the list till $a_{j, s-1}$.
Hence $\chi_{s \leq r \leq \Delta\left(W_{s}^{q}\right)}\left(W_{s}^{q}\right) \leq r+1$.
Therefore, $\chi_{s \leq r \leq \Delta\left(W_{s}^{q}\right)}\left(W_{s}^{q}\right)=r+1$.
Lemma 4.7. For $S \geq 2$, the lower bound for r dynamic chromatic number of book graph B_{S} is,
$\chi_{r}\left(B_{s}\right) \geq\left\{\begin{array}{c}2, r=1 \\ r+1,2 \leq r \leq \Delta\left(B_{s}\right)\end{array}\right.$
Proof. The vertex set of book graph $V\left(B_{s}\right)=$ $\left\{b_{1, j}, b_{2, j}, x, y: 1 \leq j \leq s\right\} \quad$ and edge set $E\left(B_{s}\right)=\left\{x b_{1, j}, \mathrm{y} b_{2, j}, b_{1, j} b_{2, j}: 1 \leq j \leq s\right\}$
Also, $\delta\left(B_{s}\right)=2$ and $\Delta\left(B_{s}\right)=\mathrm{d}(x)=\mathrm{d}(y)=$ s. And, order of B_{s} is $\left|V\left(B_{s}\right)\right|=2 \mathrm{~s}+2$ and size is $\left|E\left(B_{s}\right)\right|=3 \mathrm{~s}$.
Since the maximal complete subgraph is of order 2 we have $\chi_{r=1}\left(B a_{s}\right) \geq 2$.
For $2 \leq r \leq \Delta\left(B_{s}\right)$, by Lemma $3.1 \chi_{r}(H) \geq$ $\min \{r, \Delta(H)\}+1$.
Therefore, $\chi_{2 \leq r \leq \Delta\left(B_{S}\right)}\left(B_{s}\right) \geq \min \left\{r, \Delta\left(B a_{s}\right)\right\}+$ $1=r+1$.

Theorem 4.8. For $s \geq 2$, the r-dynamic chromatic number of book graph B_{s} is, $\quad \chi_{r}\left(B_{s}\right)=$
$\left\{\begin{array}{c}2, r=1 \\ 4, r=2,3 \\ r+1,4 \leq r \leq \Delta\left(B_{s}\right)\end{array}\right.$

Proof. We have two cases: $r=1, r=2,3$ and $4 \leq r \leq \Delta\left(B_{s}\right)$.
Case 1: When $r=1$.
By Lemma 4.7 we have the lower bound $\chi_{1}\left(B a_{s}\right) \geq 2$. The coloring is provided by the map
$c_{6}: V\left(B_{s}\right) \rightarrow\{1,2\}$ as follows:
$c_{6}(x)=1$ and $c_{6}(y)=2$.
$c_{6}\left(b_{1, j}\right)=2$ and $c_{6}\left(b_{2, j}\right)=1$ for $1 \leq j \leq s$.
By the above coloring $\chi_{1}\left(B_{s}\right) \leq 2$. Hence $\chi_{1}\left(B_{s}\right)=2$.
Case 2: When $r=2,3$.
By Lemma 4.7 we have the lower bound $\chi_{r=2}\left(B_{s}\right) \geq r+1=3$. But since there is presence of C_{4} in B_{S} which leads to the need of an extra color when $r=2$. So, the lower bound becomes $\chi_{r=2}\left(B_{s}\right) \geq 4$ and by the same lemma we have the lower bound $\chi_{r=3}\left(B_{s}\right) \geq r+1=4$. Now we assign coloring by the mapping $c_{7}: V\left(B_{s}\right) \rightarrow\{1,2,3,4\}$.
$c_{7}(x)=1$ and $c_{7}(y)=2$.
$c_{7}\left(b_{1, j}\right)=\left\{\begin{array}{l}3, j \text { is odd } \\ 4, j \text { is even }\end{array} \quad\right.$ and $c_{7}\left(b_{2, j}\right)=$
$\left\{\begin{array}{l}4, j \text { is odd } \\ 3, j \text { is even }\end{array}\right.$
For $r=3$ the coloring provided above is sufficient.
So, we have the upper bound $\chi_{r=2,3}\left(B_{S}\right) \leq 4$.
Therefore, $\chi_{r=2,3}\left(B_{s}\right)=4$.
Case 3: When $4 \leq r \leq \Delta\left(B_{s}\right)$.
By Lemma 4.7 we have the lower bound

$$
\begin{aligned}
& \chi_{4 \leq r \leq \Delta\left(B_{S}\right)}\left(B_{S}\right) \geq r+1 . \text { Consider the } \\
& \text { mapping }
\end{aligned}
$$

$c: V\left(B_{s}\right) \rightarrow\{1,2, \ldots, r+1\}$ which gives the coloring for the vertices.
$c(x)=1$ and $c(y)=2$.
$c\left(b_{1,1}, b_{1,2}, \ldots, b_{1, s}\right)=\{3,4, \ldots, r+$
1, $\underbrace{3,4, \ldots}_{s-(r-1) \text { terms }}\}$.
$c\left(b_{2,1}, b_{2,2}, \ldots, b_{2, s}\right)=\{4, \ldots, r+$
$1,3, \underbrace{4,5, \ldots}_{s-(r-1) \text { terms }}\}$.

Hence $\chi_{4 \leq r \leq \Delta\left(B_{S}\right)}\left(B_{S}\right) \leq r+1$. Therefore, we have $\chi_{4 \leq r \leq \Delta\left(B_{S}\right)}\left(B_{S}\right)=r+1$.

Lemma 4.9. For $s \geq 2$, the lower bound for r dynamic chromatic number of pencil graph $P C_{S}$ is, $\chi_{r}\left(P c_{s}\right) \geq\left\{\begin{array}{l}3, r=1,2 \\ 4, r \geq \Delta\left(P c_{s}\right)\end{array}\right.$
Proof. The pencil graph $P c_{S}$ is a regular graph with degree 3. The vertex set is defined as $\left\{a_{q}, b_{q}: q=\right.$ $0,1, \ldots, s\}$ and edge set $\left\{a_{q} a_{q+1}, b_{q} b_{q+1}: q=\right.$ $1,2, \ldots, s-1\} \cup\left\{a_{0} a_{1}, a_{0} b_{1}\right.$,
$\left.b_{0} a_{s}, b_{0} b_{s}\right\} \cup\left\{a_{q} b_{q}: q=0,1, \ldots, s\right\}$. Also, $\delta\left(P c_{s}\right)=\Delta\left(P c_{s}\right)=3$. And, order of $P c_{s}$ is $\left|V\left(P c_{s}\right)\right|=2 \mathrm{~s}+2$ and size is $\left|E\left(P c_{s}\right)\right|=$ $3(\mathrm{~s}+1)$.
There is a clique of order 3 we have $\chi_{r=1,2}\left(P c_{s}\right) \geq$ 3.

For $r \geq \Delta\left(P c_{S}\right)$, by Lemma $3.1 \quad \chi_{r}(H) \geq$ $\min \{r, \Delta(H)\}+1$.
Therefore, $\quad \chi_{r \geq \Delta\left(P c_{s}\right)}\left(B_{S}\right) \geq \min \left\{r, \Delta\left(P c_{s}\right)\right\}+$ $1=\Delta\left(P c_{S}\right)+1=4$.
Theorem 4.10. For $s \geq 2$, the r-dynamic chromatic number of pencil graph $P c_{s}$ is, $\chi_{r}\left(P c_{s}\right)=$ $(3, r=1,2 s \equiv 0,2(\bmod 3)$,
$\left\{\begin{array}{l}r=1 \text { and } s \equiv 1(\bmod 3) \\ 4, r=2 \text { and } s \equiv 1(\bmod 3) \\ 5, r=3 \text { and } s \equiv 0(\bmod 4) \\ 6, r=3 \text { and } \text { otherwise }\end{array}\right.$
Proof. We have four cases to consider here.
Case 1: When
$r=1,2$ and $s \equiv 0,2(\bmod 3), r=1$ and $s \equiv$ $1(\bmod 3)$.
Subcase 1: When $r=1,2$ and $s \equiv 0,2(\bmod 3)$
By Lemma 4.9 we have the lower bound
$\chi_{r=1,2}\left(P c_{s}\right) \geq 3$. For upper bound consider the $\operatorname{map} c_{8}: V\left(P c_{s}\right) \rightarrow\{1,2,3\}$.
$c_{8}\left(a_{0}\right)=3$
$c_{8}\left(a_{1}, a_{2}, \ldots, a_{s}\right)=\{1,2,3,1,2,3, \ldots, 1,2,3\}$
when $s \equiv 0(\bmod 3)$
$c_{8}\left(a_{1}, a_{2}, \ldots, a_{s}\right)=\{1,2,3,1,2,3, \ldots, 1,2\}$
when $s \equiv 2(\bmod 3)$
$c_{8}\left(b_{1}, b_{2}, \ldots, b_{s}\right)=\{3,2,1,3,2,1, \ldots, 3,2,1\}$
when $s \equiv 0(\bmod 3)$
$c_{8}\left(b_{1}, b_{2}, \ldots, b_{s}\right)=\{3,2,1,3,2,1, \ldots, 3,2\}$
when $s \equiv 2(\bmod 3)$
$c_{8}\left(b_{0}\right)=\left\{\begin{array}{l}2, \text { when } s \equiv 0(\bmod 3) \\ 1, \text { when } s \equiv 2(\bmod 3)\end{array}\right.$
Hence $\chi_{r=1,2}\left(P c_{s}\right) \leq 3$ and therefore
$\chi_{r=1,2}\left(P c_{s}\right)=3$ when $s \equiv 0,2(\bmod 3)$.
Subcase 2: When $r=1$ and $s \equiv 1(\bmod 3)$.
By Lemma 4.9 we have the lower bound
$\chi_{r=1}\left(P c_{s}\right) \geq 3$. Consider the map $c_{8}: V\left(P c_{s}\right) \rightarrow$ $\{1,2,3\}$.
$c_{8}\left(a_{1}, a_{2}, \ldots, a_{s}\right)=\{1,2,1,2, \ldots, 1,2\}$ when s is even
$c_{8}\left(a_{1}, a_{2}, \ldots, a_{s}\right)=\{1,2,1,2, \ldots, 1\} \quad$ when s is odd
$c_{8}\left(b_{1}, b_{2}, \ldots, b_{s}\right)=\{2,1,2,1, \ldots, 2,3\}$ when s is even
$c_{8}\left(b_{1}, b_{2}, \ldots, b_{s}\right)=\{2,1,2,1, \ldots, 2,1,3\}$ when s is odd
$c_{8}\left(a_{0}\right)=3$ and $c_{8}\left(b_{0}\right)=\left\{\begin{array}{c}1, \text { when } s \text { is even } \\ 2, \text { when } s \text { is odd }\end{array}\right.$
Hence $\chi_{r=1}\left(P c_{s}\right) \leq 3$ and therefore
$\chi_{r=1}\left(P c_{s}\right)=3$ when $s \equiv 1(\bmod 3)$.
Case 2: When $r=2$ and $s \equiv 1(\bmod 3)$.
By Lemma 4.9 we have the lower bound $\chi_{r=2}\left(P c_{s}\right) \geq 3$. But we need an extra color when $s \equiv 1(\bmod 3)$ to satisfy r-adjacency condition. So, the lower bound transforms to $\chi_{r=2}\left(P c_{s}\right) \geq 4$.
For upper bound assign the following coloring provided with the mapping $c_{9}: V\left(P c_{s}\right) \rightarrow$ \{1,2,3,4\}.
$c_{9}\left(a_{0}\right)=3$ and $c_{9}\left(b_{0}\right)=4$
$c_{9}\left(a_{1}, a_{2}, \ldots, a_{s}\right)=\{1,2,3,1,2,3, \ldots\}$
$c_{9}\left(b_{1}, b_{2}, \ldots, b_{s}\right)=\{2,3,1,2,3,1, \ldots\}$
Hence $\chi_{r=2}\left(P c_{s}\right) \leq 4$. Therefore, $\chi_{r=2}\left(P c_{s}\right)=$ 4 when $s \equiv 1(\bmod 3)$.
Case 3: When $r=3$ and $s \equiv 0(\bmod 4)$.
By Lemma 4.9 we have the lower bound $\chi_{r=3}\left(P c_{s}\right) \geq r+1=4$. But inorder to r adjacency condition we need an extra color and hence the lower bound transforms to $\chi_{r=3}\left(P c_{s}\right) \geq$ 5.

Assign the coloring by the map $c_{10}: V\left(P c_{s}\right) \rightarrow$ $\{1,2, \ldots, 5\}$.

For $\quad 1 \leq q \leq s \quad, \quad c_{10}\left(a_{q}\right)=$ $\left\{\begin{array}{l}1, \text { when } q \equiv 1(\bmod 4) \\ 4, \text { when } q \equiv 2(\bmod 4) \\ 3, \text { when } q \equiv 3(\bmod 4) \\ 2, \text { when } q \equiv 0(\bmod 4)\end{array}\right.$
$\left\{\begin{array}{l}2, \text { when } q \equiv 1(\bmod 4) \\ 5, \text { when } q \equiv 2(\bmod 4) \\ 1, \text { when } q \equiv 3(\bmod 4) \\ 4, \text { when } q \equiv 0(\bmod 4)\end{array}\right.$
$c_{10}\left(a_{0}\right)=3$ and $c_{10}\left(b_{0}\right)=5$.
Thus, the upper bound is $\chi_{r=3}\left(P c_{s}\right) \leq 5$. Therefore, $\chi_{r=3}\left(P c_{s}\right)=5$.
Case 4: When $r=3$ and otherwise.
By Lemma 4.9 we have the lower bound $\chi_{r=3}\left(P c_{S}\right) \geq 4$. But inorder to r-adjacency condition
we are forced to introduce two new colors and hence the lower bound $\chi_{r=3}\left(P c_{s}\right) \geq 6$. Assign
the coloring by the map $c_{11}: V\left(P c_{s}\right) \rightarrow$ $\{1,2, \ldots, 6\}$.
$c_{11}\left(a_{1}, a_{2}, \ldots, a_{s}\right)=\{1,4,2,5,1,4,2,5, \ldots, 1\}$
when $s \equiv 1(\bmod 4)$
$c_{11}\left(a_{1}, a_{2}, \ldots, a_{s}\right)=$
$\{1,4,2,5,1,4,2,5, \ldots, 1,4\}$ when $s \equiv$ $2(\bmod 4)$
$c_{11}\left(a_{1}, a_{2}, \ldots, a_{s}\right)=$
$\{1,4,2,5,1,4,2,5, \ldots, 1,4,2\}$ when
$s \equiv 3(\bmod 4)$
$c_{11}\left(b_{1}, b_{2}, \ldots, b_{s}\right)=$
$\{2,5,1,4,2,5,1,4, \ldots, 2\}$ when $s \equiv 1(\bmod 4)$
$c_{11}\left(b_{1}, b_{2}, \ldots, b_{s}\right)=$
$\{2,5,1,4,2,5,1,4, \ldots, 2,5\}$ when $s \equiv$
$2(\bmod 4)$
$c_{11}\left(b_{1}, b_{2}, \ldots, b_{s}\right)=$
$\{2,5,1,4,2,5,1,4, \ldots, 2,5,1\}$ when
$s \equiv 3(\bmod 4)$
$c_{11}\left(a_{0}\right)=3$ and $c_{11}\left(b_{0}\right)=6$.
Thus, the upper bound is $\chi_{r=3}\left(P c_{s}\right) \leq 6$.
Therefore, $\chi_{r=3}\left(P c_{s}\right)=6$, otherwise i.e., when $s \equiv 1,2,3(\bmod 4)$.

REFERENCES

1. A.S. Akbari, A. Dehghana and M. Ghanbari, (2012). On the difference between chromatic and dynamic chromatic number of graphs, Discrete Math. 312: 2579-2583.
2. S. Akbari, M. Ghanbari and S. Jahanbakam, (2010). On the dynamic chromatic number of graphs, in: Combinatorics and Graphs, in: Contemp. Math., (Amer. Math. Soc.), 531: 11-18.
3. S. Akbari, M. Ghanbari and S. Jahanbakam, (2009). On the list dynamic coloring of graphs, Discrete Appl. Math. 157: 3005-3007.
4. A. Albina and U. Mary, (2018). A Study on Dominator Coloring of Friendship and Barbell Graphs, International Journal of Mathematics and its Applications, 6(4): 99-105.
5. M. Alishahi, (2012). Dynamic chromatic number of regular graphs, Discrete Appl. Math. 160: 20982103.
6. N.S. Dian and A.N.M. Salman, (2015). The Rainbow (Vertex) Connection Number of Pencil Graphs, Procedia Computer Science, 74: 138-142.
7. D.A. Gregory, S. McGuinness and W. Wallis, (1986). Clique Partitions of the Cocktail Party Graph, Discrete Mathematics 59: 267-273.
8. B.N. Kavitha, Indrani Pramod Kelkar and K. R. Rajanna, (2018). Perfect Domination in Book Graph and Stacked Book Graph. International Journal of Mathematics Trends and Technology, 56(7): 511-514.
9. H. J. Lai, B. Montgomery and H. Poon, (2003). Upper bounds of dynamic chromatic number. Ars Combin. 68: 193-201.
10. N. Mohanapriya, V.J. Vernold and M. Venkatachalam, (2016). On dynamic coloring of Fan graphs. Int. J. Pure Appl. Math. 106(8): 169174.
11. P. Shiladhar, A.M. Naji and N.D. Soner, (2018). Computation of Leap Zagreb Indices of Some Windmill Graphs. International Journal of Mathematics and its Applications 6(2-B): 183191.

The text of this article is licensed under a Creative Commons Attribution 4.0 International License

