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ABSTRACT

The r-dynamic coloring of a graph H is a proper p-coloring of the vertices of the graph H so that for
every vertex a € V(H) has neighbors in atleast min{r, d (a)} distinct classes of color. The least p which
provides H an r-dynamic coloring with p colors is known as r-dynamic chromatic number of the graph
H and it is denoted as y,-(H). In this paper, we have attained the lower, upper bound and exact r-
dynamic chromatic number for cocktail party graph Cpg, s-barbell graph Bag, windmill graph VI/Sq,

book graph B and pencil graph Pc;.
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1. INTRODUCTION

Throughout we take into account simple,
finite and connected graphs. Montgomery was the
pioneer in dynamic coloring. Dynamic coloring [1,
2,3,5,9, 10] of a graph is proper coloring of H so
that each and every vertex a € V(H) has
neighbors in atleast two different classes of color.
And its generalized version is r-dynamic coloring.
A mapping
c: V(H) - Q, the set of colors with Q = |p|,
is known as r-dynamic coloring if the following
two rules holds:

1) c(a) # c(2) for az € E(G) and
2) |C(N(Z))| > min{r,d(z)}, for each and every
z €V (H) where N(z) denotes the set of

neighbors of z, 1" is a positive integer and d (2) is the
degree of the vertex z in H.

The first rule is an indication for proper
coloring and the second rule is the r-adjacency
condition. The r-dynamic chromatic number is
the least p that allows H an r-dynamic coloring
with p colors and it is denoted as ), (H). The r-
dynamic chromatic number does not differ once
r reaches the saturation value A. There are
many open problems one among them was
conjectured by Montgomery which states for
regular graphs the result x,.(H) < x,.(H) + 2.
Graph coloring is one among the most challenging
problems in mathematics and has many real-life
applications.

2. PRELIMINARIES

[7] The Cocktail Party Graph Cpyis a graph with

s =2q vertices aj,j=1,2,...,2q with
a; non-adjacent to @j;4 and adjacent to all
other vertices.

[4] The s- Barbell Graph Bag is attained by

connecting two copies of complete graph K by a
bridge. Here, we are connecting the first two
vertices of K by a bridge.

[12] The Windmill Graph W, with q,s > 2 is
constructed by considering q copies of the
complete graph K; with a universal vertex
(common vertex). When g = 2 and q = 3 i.e., W
and W2 they are the star graph and friendship
graph respectively.

[8] The Book Graph B is the Cartesian product of
star graph K ¢ and path P, ie, K; ¢ X P,.

[6] For s = 2, the Pencil Graph Pc; is a graph with
2s + 2 vertices where the vertex set is {ag, by :
q=0,1,..,s}and edge set{azagi1,bgbg41 :
q=12,..,5s — 1} U {apay,apby,

boas, bobs} U {agh, : q =0,1,...,s}.
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3. OBSERVATIONS

Lemma 3.1. y,.(H) = min{r,A(H)}+1is a
lemma providing the lower bound for r-dynamic
chromatic number found by Montgomery and Lai

[9].
Note 3.2. We can observe easily from the graph Cp

S
that there is a clique of order E=q hence

xr(Cps) = q.
Note 3.3. From the definition of Bagand W,
there is a maximal complete subgraph of order s

hence y,(Bag) = s and)(r(VVSq) > S.

4.RESULTS

Lemma 4.1. For ¢ = 2, the lower bound for r-
dynamic chromatic number of cocktail party graph

. q,1<r<q-1
Cps is, xr(Cps) = {r +1,q <r <A(Cps)
Proof. The cocktail party graph is Cpg is regular
graph with degree 2(q - 1). Then V(Cps) =
{a;,j = 1,2,..,2q} and E(Cps) =
{ajar:j,k=1,2,..,2q where j #k =)+
q}. Also, &(Cps) = A(Cps) = 2(q—1).
The order of Cpy is |V (Cps)| = s = 2qand size
is |[E(Cps)| = s(q — 1.
By Note 3.2 we have X1<r<q—1(CPs) = q.
For q <r < A(Cps), by Lemma 3.1 y,.(H) =
min{r,A(H)} + 1.

Therefore,
qurSA(Cps)(Cps) = min{r:A(Cps)} +
1=r+1.

Theorem 4.2. Forq = 2, the r-dynamic chromatic

number of cocktail party graph Cpg is,
_(gl=sr=<q-1

2 (Cps) = {Zq, q <r < A(Cps)

Proof. We have two cases: 1 <1 < q—1 and

q < r < A(Cps) to consider.

Case1:Whenl <r<q -1
By Lemma 4.1 we have the

Xlerq—l(Cps) = q. Consider the
c:V(Cps) - {1,2,...,q} and
follows:

c(a) =j,j=12,..,q.
ci(aq)) =k, j=q+kandk =1,2,...,q since
a;j and Qj 4 are non-adjacent.

By the above coloring Xlsrsq—l(Cps) < (¢.Hence

X1srs<q-1 (Cps) = q.

bound
map

lower

coloring as

Case 2: When g < 1 < A(Cpsy).

By Lemma 4.1 we have Xq<r<a(cp,)(CPs) =7 +
1 but inorder to satisfy the r-adjacency condition we
require 2q colors in total hence we the lower bound
have XqusA(Cps)(Cps) = 2q. The upper bound is
given by the coloring below considering the
mapping ¢,: V(Cps) = {1,2,...,2q}.

C1 (aj) = ]'] =

1,2, ...,2q and Xq<r<accp,)(CPs) < 2q.
Therefore, X g<r<a(cp,) (CPs) = 24.

Lemma 4.3. ForS = 2, the lower bound for r-
dynamic chromatic number of barbell graph Bag is,

)((Ba)z{ s;1<r<s-1
r S s+ 1,r > A(Bay)

Proof. The vertex set of barbell graph V(Bag) =
{a;,bj:1 < j <s}. Here we assume that the
vertices a;and b, are adjacent by a bridge and
E(Bas) = {ajay, bjby : j,
k=1,2,..,s and
j =k} U {ab,} Also, &(Bag) =s—
1land A(Ba,) = d(a,) =d(b;) =s. And ,
order of Bag is |V(Bag)| = 2s and size is
|E(Bag)| =s?— s +1.
By Note 3.3 we have X1<y<s—1(Bas) = s.
For r = A(Bay) , 31 x-(H) =
min{r,A(H)} + 1.
Therefore,
Xr=A(Bay) (Bas) = min{r' A(Bas)} +
1=A(Bas)+1=s+1.

by Lemma

Theorem 4.4. For S = 2, the r-dynamic chromatic

number of barbell graph Bag is, y,.(Bas) =
s5;1<r<s-—1

{ s+ 1,7r = A(Bay)

Proof. We have two cases: 1 <r <s—1 and
r = A(Bay) to consider.

Case 1: When1 <r <s—1.

By Lemma 4.3 we have the lower bound

Xi<r<s—1(Bag) = s.The coloring is provided by

the mapping c3:V(Bas) - {1,2,...,5} as

follows:
cz3(aq,ay,...,a5) =1{1,2,...,s}.
C3(b1, bz, ey bS) = {2, 3, ey S, 1}

By the above coloring Y1 <r<s—1(Bag) < S.
Hence X1<r<s—1(Bag) = s.
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Case 2: Whenr = A(Bay).
By Lemma 4.3 we have the bound

Xr=n(Bay)(Bas) = s+ 1. The upper bound is
given by the coloring below considering the
mapping ¢4: V(Bag) = {1,...,s + 1}
ci(aq,ay,...,a5) ={1,2,...,s}
cs(b1)=s+1 and c3(by, b, ...
{2,3,...,s}

Xr:A(BaS)(Bas) <s+1.

Therefore, Xr=p(pa,)(Bas) =s + 1.

lower
’ bs) =

Lemma 4.5. Forq,s = 2, the lower bound for r-

dynamic chromatic number of windmill graph M/Sq
. W) > s;1<r<s-1

is 2 (W) 2 {r+ 1s <r < AW

Proof. The vertex set of windmill graph V(]/Vsq) =
{ao}U{a;1, aj2,..., aj5-1 11 <j < q}
where G is universal vertex adjacent to all other
vertices{@j, : 1 < j<qand1 <k <s-—1}
Edge set is E(W'Sq) ={ajxa;; :k#i&1 <
j<qand 1<k, i<s-—1}U{apa;\ :
1<j<qand1<k<s-1} .
S(W) =s—1and A(W?) = d(ap) =
q(s—1). And, order of W, is |V(VVSq)| =
q(s — 1) + 1 and size is |E(VVSq)| = %_1)

By Note 3.3 we have XlerS—l(]/Vsq) > s.

Fors <r < A(VVSq), by Lemma 3.1 y,.(H) =
min{r,A(H)} + 1.

Also,

Therefore,
Xssrsa(wd) (Vvsq) = min{T'A(VVsq)} +
1=r+1.

Theorem 4.6. For q,S = 2, the r-dynamic

chromatic number of windmill graph Vl/sq is,
s;1<r<s-1

x(W5') = {r +1,5s <7< AW)

Proof. We have two cases: 1 <r < s —1 and
sSr< A(Vl/sq) to consider.
Case 1: When1 <r <s-—1.

By Lemma 4.5 we have the
X15r55—1(qu) 2

s.The coloring is provided by  the
Cs: V(VVSq) - {1,2,..., s} as follows:

lower bound

map

cs(ap) = 1.

cs(ajq, Ageees Ajs—1) =1{2,3,...
1<j<q

By the above coloring X15r55—1(VVsq) < S.Hence
XlerS—l(M/sq) =S.

Case2: Whens <1 < A(Vl/sq).

By Lemma 4.5 we have XssrsA(qu)(VVSq) >r+

,S} for

1. The upper bound is given by the coloring below
considering the mapping  C: V(W;q) -
{1,2,...,r + 1} for different stages of r-.

¢ (ap) = 1 forall cases of r.
Whenr=s.

C(al,l, al,z,..., al,s_l) = {2, 3,...,5}
C(az,p aZ,Z;---i a’Z,S—l) = {S + 1, 3, 4‘,...,3}

C (aj,l’ aj,z,. ey aj,S—l) = {2; 3; e 'IS} for 3
<j<q

H q

ence)(r=s(VVs ) <s+1.

When r =s+1.

c (02,1: A2,2)++ ) az,s—l)
= {S+ 1,S+ 2,4’,...,5}

c(@1, a2y Ajs-1) ={2,3,...,5} forl

<j<qand j+ 2.
Hence)(r=s+1(VVSq) <s+2
Proceeding like this at each stage of r we introduce
the color r+1 to the next vertex in the list till @; s_1.

Hence XssrsA(qu)(VVsq) <r+1.
Therefore, Xs<rsa(w) (I/l/;q) =r+1.

Lemma 4.7. ForS = 2, the lower bound for r-
dynamic chromatic number of book graph By is,
2,r=1

xr (By) 2 {r +1,2 <1 <A(B)

Proof. The vertex set of book graph V(Bg) =

{b1j,b2j,x%,y:1<j<s} and edge set

E(Bs) = {xbl,j’be,j’ bl,ij,j 01 S] < S}

Also, 6(Bs) =2and A(By) =d(x) =d(y) =

s. And, order of B; is |V(Bs)| = 2s + 2 and size

is |E(By)| = 3s.

Since the maximal complete subgraph is of order 2 we

have y,—1(Bas) = 2.

For2 <r < A(Bs),by Lemma 3.1 y,.(H) =

min{r, A(H)} + 1.

Therefore, X2<r<a(,)(Bs) = min{r,A(Bay)} +
1=r+1.
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Theorem 4.8. For S = 2, the r-dynamic chromatic

number of book graph By is, x-(Bs) =
2, r=1
4,vr=2,3

r+ 1,4 <r < A(By)

Proof. We have two cases: v = 1,7 = 2,3 and
4 <r < A(By).

Case 1: When7 = 1.
By Lemma 4.7 we have the lower bound
x1(Bag) = 2.The coloring is provided by the
map
ce: V(Bs) = {1,2} as follows:
Co(x) = land cg(y) = 2.
Co(b1,j) = 2and c(byj) = 1for1 <j <s.
By the above coloring y;(Bs) < 2. Hence
Xx1(Bs) = 2,
Case 2: When1 = 2,3.
By Lemma 4.7 we have the

XT:Z(Bs) >r+1=3. But

presence of Cy in Bs which leads to the need of an

bound
there is

lower
since

extra color when 7 = 2. So, the lower bound
becomes ),—,(Bs) = 4 and by the same lemma we

have the lower bound y,—3(Bs) =1+ 1= 4.
Now we assign coloring by the mapping

c;: V(Bs) = {1,2,3,4}.
c7(x) = landc;(y) = 2.

3,jis odd
e ={ )

4,j is even
4,jis odd
{ 3,j is even

For r = 3 the coloring provided above is sufficient.

So, we have the upper bound Y= 3(Bs) < 4.

Therefore, Y= 3(Bs) = 4.

Case 3: When 4 < r < A(Bq).

By Lemma 4.7 we have the lower bound
Xasr<A(B) (Bs) = r + 1. Consider the
mapping

c:V(Bs) = {1,2,...,7 + 1} which gives the
coloring for the vertices.

c(x)=1landc(y) = 2.

and Cy (bZJ) =

c(b11,b12,...,b15) ={3,4,...,7 +
1, 3,4,... }

s—(r—1) terms
¢ (by1, b2, bas) = {4,..., 7 +
1,3, 4,5,... }

s—(r—1) terms

Hence Y4<r<a(By) (B;) < 1 + 1. Therefore, we
have Y4<r<a(s,)(Bs) =7 + 1.

Lemma 4.9. Fors = 2, the lower bound for r-
dynamic chromatic number of pencil graph Pcy is,

37 =12
Xr(Pes) 2 { 4,7 > A(Pc,)

Proof. The pencil graph Pc, 1S a regular graph with
degree 3. The vertex set is defined as {aq, by : q =
0,1, ...,s} and edge set{ayag41,bgbg+1 : q =
1,2,..,s — 1} U{agaq, apby,
boas, bobs} U {aghs : q =0,1,...,s}. Also,
6(Pcg) = A(Pcg) = 3. And, order of Pcy is
|[V(Pcg)| = 2s+ 2 and size is |E(Pcs)| =
3(s+1).
There is a clique of order 3 we have X,—1 (Pcy) =
3.
For ¥ =2 A(Pcg) , by Lemma 3.1 y,.(H) =
min{r, A(H)} + 1.
Therefore,  Xrsa(pcy)(Bs) = min{r, A(Pcs)} +
1=A(Pc) +1 = 4.
Theorem 4.10. For S = 2, the r-dynamic chromatic
number of pencil graph Pcg is, y,.(Pcg) =
(3,r =12 s =0,2(mod 3),
r=1and s = 1(mod 3)

4,r =2 and s = 1(mod 3)

5, r=3and s = 0(mod4)

6, r = 3 and otherwise

Proof. We have four cases to consider here.

Case 1: When

r=12and s =0,2(mod 3),r =1and s =
1(mod 3).

Subcase 1: Whenr = 1,2 and s = 0,2(mod 3)
By Lemma 4.9 we have the lower bound

Xr=12 (Pcg) = 3. For upper bound consider the

map cg: V(Pcg) = {1,2,3}.

cg(ap) = 3

cg(ay,ay,...,a5) ={1,2,3,1,2,3, ...,1,2,3}
when s = 0(mod 3)

cg(aq,ay,...,a,) =1{1,2,3,1,2,3, ...,1,2}
when s = 2(mod 3)

cg(by, bs,...,bs) ={3,2,1,3,2,1, ...,3,2,1}

when s = 0(mod 3)
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cg(by, by, ...,bs) =1{3,2,1,3,2,1, ...,3,2}
when s = 2(mod 3)

_ (2,when s = 0(mod 3)
cg(bo) = {1, when s = 2(mod 3)
Hence Y;=1 2(Pcs) < 3 and therefore
Xr=12(Pcs) = 3whens = 0,2(mod 3).
Subcase 2: Whenr = 1 and s = 1(mod 3).
By Lemma 4.9 we have the lower bound
Xr=1(Pcs) = 3. Consider the map cg: V(Pcg) —
{1,2,3}.
cg(aq,ay,...,a) ={1,2,1,2, ...,1,2} when
s is even

cg(aq,ay,...,a5) ={1,2,1,2, ..., 1} when
sisodd

cg(by, by, ..., bs) ={2,1,2,1, ...,2,3} when

s is even

cg(by,by,...,bs) ={2,1,2,1, ...,2,1,3} when
sisodd

oo =ity = { s v
Hence ),—1(Pcs) < 3 and therefore

Xr=1(Pcs) = 3whens = 1(mod 3).

Case 2: Whenr = 2 and s = 1(mod 3).

By Lemma 4.9 we have the lower bound
Xr=2(Pcs) = 3.But we need an extra color when
s = 1(mod 3) to satisfy r-adjacency condition. So,
the lower bound transforms to Y=, (Pcs) = 4.
For upper bound assign the following coloring
provided with the mapping cq: V(Pcg) =
{1,2,3,4}.

co(ag) = 3and co(by) = 4

co(ay,ay,...,as) =4{1,2,3,1,2,3, ...}
co(by, by, ...,bs) =1{2,3,1,2,3,1, ...}

Hence Y,—,(Pcs) < 4. Therefore, Y,—,(Pcs) =
4 when s = 1(mod 3).

Case 3: Whenr = 3 and s = 0(mod 4).
By Lemma 4.9 we have the lower bound

Xr=3(Pcs) =21+ 1=4. But inorder to r-
adjacency condition we need an extra color and

hence the lower bound transforms to Y,—3(Pcs) =
5.

Assign the coloring by the map ¢;¢: V(Pcs) —
1,2,...,5).

For 1<qg<s
(1,when q = 1(mod 4)
) 4,when q = 2(mod 4)
3,when q = 3(mod 4)
\2,when q = 0(mod 4)
(2,when q = 1(mod 4)
5 when q = 2(mod 4)
1,when q = 3(mod 4)
\4, when q = 0(mod 4)
c10(ap) = 3and ¢y0(by) =5.
Thus, the upper bound is Y,—3(Pcs) <5.
Therefore, y,—3(Pcg) = 5.
Case 4: When 1 = 3 and otherwise.
By Lemma 4.9 we have the lower
Xr=3(Pcs) = 4. But inorder to
condition
we are forced to introduce two new colors and

hence the lower bound Y,—3(Pcg) = 6. Assign
map ¢q1: V(Pcg) —

C10(aq) =

ClO(bq) =

bound
r-adjacency

the coloring by the
{1,2,...,6}.
Cll(al,az,...,as) = {1,4‘, 2, 5, 1,4, 2, 5,..., 1}
when s = 1(mod 4)

c11(ay,ay,...,0a5) =
{1,4,2,5,1,4,2,5,...,1,4} whens =

2(mod 4)

c11(ay,ay,...,0a5) =
{1,4,2,5,1,4,2,5,...,1,4,2} when

s = 3(mod 4)

c11(b1, by, ..., bs) =

{2,5,1,4,2,5,1,4,...,2} when s = 1(mod 4)
c11(by, by, ..., bs) =
{2,5,1,4,2,5,1,4,...,2,5} whens =

2(mod 4)

c11(b1, by, ..., bs) =
{2,5,1,4,2,5,1,4,...,2,5,1} when

s = 3(mod 4)

c11(ap) = 3and ¢y1(by) =6.

Thus, the upper bound is y,—3(Pcs) < 6.
Therefore, ¥,—3(Pcs) = 6, otherwise i.e, when
s =1,2,3(mod 4).
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