Kong. Res. J. 7(2): 114-117, 2020 **Publisher**: Kongunadu Arts and Science College, Coimbatore.

RESEARCH ARTICLE

b-CHROMATIC NUMBER OF EXTENDED CORONA OF SOME GRAPHS Kiruthika, S. and Mohanapriya, N. *

PG and Research Department of Mathematics, Kongunadu Arts and Science College (Autonomous),

Coimbatore – 641029, Tamil Nadu, India

ABSTRACT

In this paper we find out the b-chromatic number for the extended corona of path with complete on the same order $P_n \bullet K_n$ path on order n with star graph on order n+1 say $P_n \bullet K_{n+1}$, cycle with complete on the same order $C_n \bullet K_n$, cycle on order n with star graph on order n+1 say $C_n \bullet K_{n+1}$, star graph on order n+1 with complete on order n say $K_{n+1} \bullet K_n$, complete on order n with star graph on order n with star graph on order n+1 say $C_n \bullet K_{n+1}$, star order n+1 say $K_n \bullet K_{n+1}$ respectively.

Keywords: b-coloring, b-chromatic number, extended corona.

AMS(2010): 05C15.

1. INTRODUCTION

A b-coloring of a graph G is a proper coloring of the vertices of G such that there exists a vertex in each color class joined to atleast a vertex in each other color class, such a vertex is called a dominating vertex. The b-chromatic number of a graph G, denoted by $\varphi(G)$ [6], is the maximal integer k such that G may have a b-coloring by kcolors. This parameter has been derived by Irving and Manlove [3] in the year 1999 and gave an introduction about the concept of b-coloring and showed that the problem of determining $\varphi(G)$ is NP-hard for general graphs but it is polynomialtime solvable for trees. Since every b-coloring is a proper coloring, we obtain that the chromatic number $\chi(G)$ is a lower bound for $\varphi(G)$. For the upper bound notice that every color class must have a b-vertex and moreover a b-vertex can have at most $\Delta(G)$ different colors in its neighborhood. The only additional color which is possible, is the color of a b-vertex itself. Therefore the trivial upper bound for $\varphi(G)$ is $\Delta(G)+1$. Hence, we have the following bounds $\chi(G) \leq \varphi(G) \leq \Delta(G) + 1$ [4]. Here a graph is considered as an undirected, connected graph with no loops and multiple edges. This paper the b-chromatic number investigate of neighborhood corona of some graphs.

Let G_1 and G_2 be two graphs on disjoint sets of n_1 and n_2 vertices respectively. The Corona G_1 o G_2 of G_1 and G_2 is defined as the graph obtained by taking one copy of G_1 and n_1 copies of G_2 and then joining the i^{th} vertex of G_1 to each and every vertex in the i^{th} copy of G_2 . The extended corona [1], $G_1 \bullet G_2$ is the graph obtained by taking the corona $G_{1 o} G_{2}$ and joining each vertex of i^{th} copy G_{2} of to every vertex of j^{th} vertex of G_{1} to every vertex in the i^{th} copy of G_{2} .

2. b-Coloring of extended corona of graphs

Theorem 2.1

For $n \ge 5$, the b-chromatic number of extended corona of P_n with K_n is 3n i.e., $\varphi(P_n \bullet K_n) = 3n$.

Proof

Let $\{a_1, a_2, ..., a_n\}$ be the vertices of Path graph P_n and $\{b_1, b_2, ..., b_n\}$ be the vertices of Complete graph K_n

i.e., $V(P_n) = \{a_1, a_2, ..., a_n\}$ and $V(K_n) = \{b_1, b_2, ..., b_n\}$

By the definition of extended corona each vertex of P_n is adjacent to corresponding copy of K_n and each copies of K_n is adjacent to their neighborhood copies of K_n .

$$V(P_n \bullet K_n) = \{a_i : 1 \le i \le n\} \cup \{b_{ij} : 1 \le i \le n, 1 \le j \le n\}.$$

Order of the graph $|V(P_n \bullet K_n)|$ is n(n + 1), Size of the graph $|E(P_n \bullet K_n)|$ is $\frac{1}{2} (3 n^3 - n^2 + 2n - 2)$, maximum degree $\Delta (P_n \bullet K_n)$ is 3n and minimum degree δ $(P_n \bullet K_n)$ is n + 1.

Consider the set of colors $C = \{c_1, c_2, \dots, c_{3n}\}$ To make the coloring as b-chromatic consider the following procedure $c(a_i) = 1$, if $i \equiv 1 \mod 3$

^{*}Correspondence: Mohanapriya, N., PG and Research Department of Mathematics, Kongunadu Arts and Science College (Autonomous), Coimbatore – 641029, Tamil Nadu, India E.mail: n.mohanamaths@gmail.com

 $\begin{array}{l} \mathbf{c}(\boldsymbol{a}_i) = \mathbf{n} + 1, \text{ if } \mathbf{i} \equiv 2 \mod 3 \\ \mathbf{c}(\boldsymbol{a}_i) = 2\mathbf{n} + 1, \text{ if } \mathbf{i} \equiv 0 \mod 3 \\ \mathbf{c}(\boldsymbol{b}_{ij}) = \mathbf{j}, 1 \leq \mathbf{j} \leq \mathbf{n} \text{ for each } \mathbf{i} \equiv 2 \mod 3 \\ \mathbf{c}(\boldsymbol{b}_{ij}) = \mathbf{j} + \mathbf{n}, 1 \leq \mathbf{j} \leq \mathbf{n} \text{ for each } \mathbf{i} \equiv 0 \mod 3 \\ \mathbf{c}(\boldsymbol{b}_{ij}) = \mathbf{j} + 2\mathbf{n}, 1 \leq \mathbf{j} \leq \mathbf{n} \text{ for each } \mathbf{i} \equiv 1 \mod 3 \\ \end{array}$ The above coloring procedure gives that φ (P_n •

The above coloring procedure gives that $\phi(c_n | K_n) \ge 3n$.

If we introduce any new color c_{3n+1} to any vertex in the graph, that will not adjacent to all other color class, therefore b-coloring with c_{3n+1} colors is not possible. Thus we have $\varphi(P_n \bullet K_n) \leq 3n$. Hence, $\varphi(P_n \bullet K_n) = 3n$.

Remark : $\varphi(P_n \bullet K_n) = 2n, n \leq 4$.

Theorem 2.2

For $n \ge 5$, the b-chromatic number of extended corona of P_n with $K_{1,n}$ is 6

i.e., $\varphi(P_n \bullet K_{1,n}) = 6.$ Proof

Let $\{a_1, a_2, ..., a_n\}$ be the vertices of Path graph P_n and $\{b_1, b_2, ..., b_n\}$ and $\{w\}$ be the vertices of Star graph $K_{1,n}$. Let w be the central vertex of Star, w is adjacent to each $\{b_i : 1 \le i \le n\}$

i.e., $V(P_n) = \{a_{1,}a_{2,}, ..., a_{n,}\}$ and $V(K_{1,n}) = \{b_{1,}b_{2,}, ..., b_{n,}\} \cup \{w\}$

By the definition of extended corona each vertex of P_n is adjacent to corresponding copy of $K_{1,n}$ and each copies of $K_{1,n}$ is adjacent to their neighborhood copies of $K_{1,n}$.

 $V(P_n \bullet K_{1,n}) = \{a_i : 1 \le i \le n\} \cup \{b_{ij} : 1 \le i \le n, 1 \le j \le n\} \cup \{w_i : 1 \le i \le n\}$

Order of the graph $|V(P_n \bullet K_{1,n})|$ is $n^2 + 2n$, Size of the graph $|E(P_n \bullet K_{1,n})|$ is $n^3 + 3n^2 + n - 2$), maximum degree $\Delta(P_n \bullet K_{1,n})$ is 3n+3 and minimum degree $\delta(P_n \bullet K_{1,n})$ is n+2.

Consider the set of colors $C = \{c_1, c_2, \dots, c_6\}$

To make the coloring as b-chromatic consider the following procedure

$$c(w_{1}, w_{2}, ..., w_{n}) = (6, 1, 2, 3, 4, 5, 6, 1, 2...)$$

$$c(b_{ij})=1, 1 \le i \le n \text{ for each } j \equiv 5 \mod 6$$

$$c(b_{ij})=2, 1 \le i \le n \text{ for each } j \equiv 0 \mod 6$$

$$c(b_{ij})=3, 1 \le i \le n \text{ for each } j \equiv 1 \mod 6$$

$$c(b_{ij})=4, 1 \le i \le n \text{ for each } j \equiv 2 \mod 6$$

$$c(b_{ij})=5, 1 \le i \le n \text{ for each } j \equiv 3 \mod 6$$

$$c(b_{ij})=6, 1 \le i \le n \text{ for each } j \equiv 4 \mod 6$$

For $1 \le i \le 6, c(a_i) = i$

For $7 \le i \le n$, $c(a_7, a_8, ..., a_n) = (1,2,3,4,5,6,1,2,...)$

The above coloring procedure gives that $\varphi(P_n \bullet K_{1,n}) \ge 6$.

If we introduce any new color c_7 to any vertex in the graph that will not adjacent to all other colors in the color set, therefore b-coloring with 7 colors is not possible. Thus we have, $\varphi(P_n \bullet K_{1,n}) \leq$ 6. Hence $\varphi(P_n \bullet K_{1,n}) = 6$, $n \geq 5$.

Theorem 2.3

For $n \ge 3$ and $n \ne 4$, the b-chromatic number of extended corona of C_n with K_n is 3n.

Proof

Let $\{a_1, a_2, ..., a_n\}$ be the vertices of Cycle graph C_n and $\{b_1, b_2, ..., b_n\}$ be the vertices of Complete graph K_n

i.e., $V(C_n) = \{a_1, a_2, ..., a_n\}$ and $V(K_n) = \{b_1, b_2, ..., b_n\}$

By the definition of extended corona each vertex of C_n is adjacent to corresponding copy of K_n and each copies of K_n is adjacent to their neighborhood copies of K_n .

$$\begin{array}{lll} \mathbb{V}(& C_n \bullet & K_n \end{array}) &= \{a_i \colon 1 \leq i \leq n\} & \cup \\ \{b_{ij} \colon 1 \leq i \leq n, 1 \leq j \leq n\}. \end{array}$$

Order of the graph $|V(C_n \bullet K_n)|$ is n(n + 1), Size of the graph $|E(C_n \bullet K_n)|$ is $\frac{1}{2}$ (3 $n^3 + n^2 + 2n$), maximum degree $\Delta (C_n \bullet K_n)$ is 3n and minimum degree δ $(C_n \bullet K_n)$ is n + 2.

Consider the set of colors C = $\{c_1, c_2, \dots, c_{3n}\}$

To make the coloring as b-chromatic consider the following procedure

Assign the color c_1 for a_3 and a_n

Assign the color c_{n+1} for $a_1, a_4, a_6, a_8,...$

Assign the color c_{2n+1} for a_2 , a_5 , a_7 , a_9 ,...

For $1 \le i \le n$, Assign the color c_{n+i} for $b_{2i}, b_{5i}, b_{7i}, b_{9i}, \dots$

For $1 \le i \le n$, Assign the color c_{2n+i} for b_{3i} and b_{ni}

For $1 \leq i \leq n$, Assign the color c_i for $b_{1i}, b_{4i}, b_{6i}, b_{8i}, \dots$

The above coloring procedure gives that φ ($C_n \bullet K_n$) $\geq 3n$.

If we introduce any new color C_{3n+1} to any vertex in the graph that will not adjacent to all other colors in the color set, therefore b-coloring with 3n+1 colors is not possible. Thus we have, $\varphi(C_n \bullet K_n) \leq 3n+1$. Hence $\varphi(C_n \bullet K_n) = 3n$, $n \geq 3$ and $n \neq 4$.

Remark : $\phi(C_4 \bullet K_4) = 8$. **Theorem 2.4**

For $n \ge 3$ and $n \ne 4$, the b-chromatic number of extended corona of C_n with $K_{1,n}$ is 6

i.e., $\varphi(C_n \bullet K_{1,n}) = 6$. **Proof**

Let $\{a_1, a_2, ..., a_n\}$ be the vertices of cycle graph C_n and $\{b_1, b_2, ..., b_n\}$ and $\{w\}$ be the vertices of Star graph $K_{1,n}$. Let w be the central vertex of Star, w is adjacent to each $\{b_i : 1 \le i \le n\}$

i.e., $V(C_n) = \{a_1, a_2, \dots, a_n\}$ and $V(K_{1,n}) = \{b_1, b_2, \dots, b_n\} \cup \{w\}$

By the definition of extended corona each vertex of C_n is adjacent to their corresponding copy of $K_{1,n}$ and each copies of $K_{1,n}$ is adjacent to their neighborhood copies of $K_{1,n}$.

Order of the graph $|V(C_n \bullet K_{1,n})|$ is $n^2 + 2n$, Size of the graph $|E(C_n \bullet K_{1,n})|$ is $n^3 + 4n^2 + 3n$), maximum degree $\Delta(C_n \bullet K_{1,n})$ is 3n and minimum degree $\delta(C_n \bullet K_{1,n})$ is n + 3.

Consider the set of colors $C = \{c_1, c_2, \dots, c_6\}$

To make the coloring as b-chromatic consider the following procedure

For $1 \le i \le 6$, assign the color c_i to a_i

For $7 \le i \le n$, assign the colors 4,2,4,2,... to consecutive vertices of a_i 's

For $1 \le i \le 6$, assign the color c_i to w_{i+1} , for $8 \le i \le n$ assign the colors 1,2,1,2,... to consecutive vertices of w_i 's and c_6 to w_1

For $1 \le i \le n$ $c(3,4,5,6,1,2,3,4,5,6,1,2,...) = (b_{1i}, b_{2i}, b_{3i}, ..., b_{ni})$

The above coloring procedure gives that φ ($C_n \bullet K_{1,n}$) ≥ 6 .

If we introduce any new color C_7 to any vertex in the graph that will not adjacent to all other colors in the color set, therefore b-coloring with 7 colors is not possible. Thus we have, $\varphi(C_n \bullet K_{1,n}) \leq$ 6. Hence $\varphi(C_n \bullet K_{1,n}) = 6$, $n \geq 3$ and $n \neq 4$. **Remark**: $\varphi(C_4 \bullet K_{1,4}) = 4$.

Theorem 2.5

For $n \ge 3$, the b-chromatic number of extended corona of K_n with $K_{1,n}$ is 2n i.e., $\varphi(K_n \bullet K_{1,n}) = 2n$.

Proof

Let $\{a_1, a_2, ..., a_n\}$ be the vertices of complete graph K_n and $\{b_1, b_2, ..., b_n\}$ and $\{w\}$ be the vertices of Star graph $K_{1,n}$. Let w be the central vertex of Star, w is adjacent to each $\{b_i : 1 \le i \le n\}$ i.e., $V(K_n) = \{a_1, a_2, ..., a_n\}$ and $V(K_{1,n}) = \{b_1, b_2, ..., b_n\} \cup \{w\}$

By the definition of extended corona each vertex of K_n is adjacent to their corresponding copy of $K_{1,n}$ and each copies of $K_{1,n}$ is adjacent to their neighborhood copies of $K_{1,n}$.

 $V(K_n \bullet K_{1,n}) = \{a_i : 1 \le i \le n\} \cup \{b_{ij} : 1 \le i \le n, 1 \le j \le n\} \cup \{w_i : 1 \le i \le n\}$

Order of the graph $|V(K_n \bullet K_{1,n})|$ is $n^2 + 2n$, Size of the graph $|E(K_n \bullet K_{1,n})|$ is $\frac{1}{2}$ ($n^4 + 2n^3 + 3n^2$), maximum degree $\Delta(K_n \bullet K_{1,n})$ is $n^2 + n$ and minimum degree $\delta(K_n \bullet K_{1,n})$ is 2n.

Consider the set of colors $C = \{c_1, c_2, \dots, c_{2n}\}$

To make the coloring as b-chromatic consider the following procedure

For $1 \le i \le n-1$, assign the color c_{i+1} to a_i and c_1 to a_n

For $1 \leq i \leq n$, assign the color c_i to w_i

For $1 \le i \le n$, assign the color c_{n+i} to bij , for each $1 \le j \le n$

The above coloring procedure gives that $\varphi(K_n \bullet K_{1,n}) \ge 2n$.

If we introduce any new color C_{2n+1} to any vertex in the graph that will not adjacent to all other colors in the color set, therefore b-coloring with 2n+1 colors is not possible. Thus we have, $\varphi(K_n \bullet K_{1,n}) \leq 2n$. Hence $\varphi(K_n \bullet K_{1,n}) = 2n$, $n \geq 3$.

Theorem 2.6

For $n \ge 3$, the b-chromatic number of extended corona of $K_{1,n}$ with K_n is 2n.

i.e., $\varphi(K_{1,n} \bullet K_n) = 2n$. **Proof**

Let $\{a_1, a_2, ..., a_n\}$ and $\{w\}$ be the vertices of star graph $K_{1,n}$. Let w be the central vertex of Star, w is adjacent to each $\{a_i : 1 \le i \le n\}$ and $\{b_1, b_2, ..., b_n\}$ be the vertices of Complete graph K_n

i.e., $V(K_{1,n}) = \{a_1, a_2, \dots, a_n\} \cup \{w\}$ and $V(K_n) = \{b_1, b_2, \dots, b_n\}$

By the definition of extended corona each vertex of $K_{1,n}$ is adjacent to their corresponding copies of

 K_n and corresponding copy K_n of the vertex w is adjacent to all other copies of K_n .

 $V(K_n \bullet K_n) = \{a_i: 1 \le i \le n\} \cup \{b_{ij}: 1 \le i \le n, 1 \le j \le n\} \cup \{w_i: 1 \le i \le n\}$

Order of the graph $|V(K_{1,n} \bullet K_n)|$ is $n^2 + 2n + 1$, Size of the graph $|E(K_{1,n} \bullet K_n)|$ is $\frac{1}{2} (3 n^3 + n^2 + 3n)$, maximum degree $\Delta(K_{1,n} \bullet K_n)$ is $n^2 + 1$ and minimum degree $\delta(P_n \bullet K_n)$ is 2n.

Consider the set of colors $C = \{c_1, c_2, \dots, c_{2n}\}$

To make the coloring as b-chromatic consider the following procedure

Assign the color C_1 to w

For $1 \le i \le n$ assign the color c_{i+1} to a_i

For $1 \le i \le n$ assign the color c_1 to b_{i1}

For $1 \le i \le n$ assign the color c_{n+j} to b_{ij} for each fixed j=1,2,...,n

The above coloring procedure gives that $\varphi(K_{1,n} \bullet K_n) \ge 2n$.

If we introduce any new color C_{2n+1} to any vertex in the graph that will not adjacent to all other colors in the color set, therefore b-coloring with 2n+1 colors is not possible. Thus we have, φ $(K_{1,n} \bullet K_n) \leq 2n$. Hence φ $(K_{1,n} \bullet K_n) = 2n$, n ≥ 3 .

REFERENCES

- 1. Chandrashekar Adiga, Rakshith B.R and K.N Subha Krishna (2016). Spectra of extended neighbourhood corona and extended corona of two graphs. *Electronic Journal of Graph Theory and its Applications* 101-110.
- 2. Indulal, G. (2011). The spectrum of neighbourhood corona of graphs. *Kragujevac Journal of Mathematics* 493-500
- *3.* Irving, R.W. and Manlove, D.F. (1999). The bchromatic number of a graph. *Discrete Applied Mathematics*
- 4. Kouider, M. and Maheo, M. (2002). Some Bounds for the b-chromatic number of Graph. *Disc. Math.* 267.
- 5. Lisna, P.C. and Sunitha, M.S. (2015). A Note on the b-Chromatic Number of Corona of Graphs, Journal of Interconnection Networks 15 (1 and 2).
- 6. Marko Jakovac and Sandi Klavzar, (2010). The b-chromatic number of cubic graphs. *Graphs and Combinatorics* 107-118.
- 7. Vernold Vivin, J. and Venkatachalam, M. (2012). The b-chromatic number of corona graphs. *Utilitas Math.* 299-307.

About The License

CC () Attribution 4.0 International (CC BY 4.0) The text of this article is licensed under a Creative Commons Attribution 4.0 International License