RESEARCH ARTICLE

b-CHROMATIC NUMBER OF EXTENDED CORONA OF SOME GRAPHS

Kiruthika, S. and Mohanapriya, N. *

PG and Research Department of Mathematics, Kongunadu Arts and Science College (Autonomous), Coimbatore - 641029, Tamil Nadu, India

Abstract

In this paper we find out the b-chromatic number for the extended corona of path with complete on the same order $P_{n} \bullet K_{n}$ path on order n with star graph on order n+1 say $P_{n} \bullet K_{n+1}$, cycle with complete on the same order $C_{n} \bullet K_{n}$, cycle on order n with star graph on order n+1 say $C_{n} \bullet K_{n+1}$, star graph on order $\mathrm{n}+1$ with complete on order n say $K_{n+1} \bullet K_{n}$, complete on order n with star graph on order n+1 say $K_{n} \bullet K_{n+1}$ respectively.

Keywords: b-coloring, b-chromatic number, extended corona.
AMS(2010): 05C15.

1. INTRODUCTION

A b-coloring of a graph G is a proper coloring of the vertices of G such that there exists a vertex in each color class joined to atleast a vertex in each other color class, such a vertex is called a dominating vertex. The b-chromatic number of a graph G, denoted by $\varphi(G)$ [6], is the maximal integer k such that G may have a b-coloring by k colors. This parameter has been derived by Irving and Manlove [3] in the year 1999 and gave an introduction about the concept of b-coloring and showed that the problem of determining $\varphi(G)$ is NP-hard for general graphs but it is polynomialtime solvable for trees.Since every b-coloring is a proper coloring, we obtain that the chromatic number $\chi(\mathrm{G})$ is a lower bound for $\varphi(\mathrm{G})$. For the upper bound notice that every color class must have a b-vertex and moreover a b-vertex can have at most $\Delta(\mathrm{G})$ different colors in its neighborhood. The only additional color which is possible, is the color of a b-vertex itself. Therefore the trivial upper bound for $\varphi(\mathrm{G})$ is $\Delta(\mathrm{G})+1$. Hence, we have the following bounds $\chi(\mathrm{G}) \leq \varphi(\mathrm{G}) \leq \Delta(\mathrm{G})+1$ [4]. Here a graph is considered as an undirected, connected graph with no loops and multiple edges. This paper investigate the b-chromatic number of neighborhood corona of some graphs.
Let G_{1} and G_{2} be two graphs on disjoint sets of n_{1} and n_{2} vertices respectively. The Corona G_{1} - G_{2} of G_{1} and G_{2} is defined as the graph obtained by taking one copy of G_{1} and n_{1} copies of G_{2} and then joining the $i^{\text {th }}$ vertex of G_{1} to each and every vertex in the $i^{\text {th }}$ copy of G_{2}. The extended corona [1], $G_{1} \bullet G_{2}$ is the graph obtained by taking the
corona $G_{10} G_{2}$ and joining each vertex of $i^{\text {th }}$ copy G_{2} of to every vertex of $j^{\text {th }}$ vertex of G_{1} to every vertex in the $i^{t h}$ copy of G_{2}.

2. b-Coloring of extended corona of graphs

Theorem 2.1

For $\mathrm{n} \geq 5$, the b-chromatic number of extended corona of P_{n} with K_{n} is $3 n$
i.e., $\varphi\left(P_{n} \bullet K_{n}\right)=3 n$.

Proof

Let $\left\{a_{1}, a_{2,}, \ldots, a_{n,}\right\}$ be the vertices of Path graph P_{n} and $\left\{b_{1}, b_{2,}, \ldots, b_{n}\right\}$ be the vertices of Complete graph K_{n}
i.e., $\mathrm{V}\left(P_{n}\right)=\left\{a_{1,}, a_{2,}, \ldots, a_{n,}\right\}$ and $\mathrm{V}\left(K_{n}\right)=$ $\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$
By the definition of extended corona each vertex of P_{n} is adjacent to corresponding copy of K_{n} and each copies of K_{n} is adjacent to their neighborhood copies of K_{n}.
$\mathrm{V}\left(P_{n} * K_{n}\right)=\left\{a_{i}: 1 \leq i \leq n\right\} \quad \cup$ $\left\{b_{i j}: 1 \leq i \leq n, 1 \leq j \leq n\right\}$.
Order of the graph $\left|\mathrm{V}\left(P_{n} \bullet K_{n}\right)\right|$ is $\mathrm{n}(\mathrm{n}+1)$, Size of the graph $\left\|\mathrm{E}\left(P_{n} \bullet K_{n}\right)\right\|$ is $\frac{1}{2}\left(3 n^{3}-n^{2}+2 n-2\right)$, maximum degree $\Delta\left(P_{n} \cdot K_{n}\right)$ is $3 n$ and minimum degree δ $\left(P_{n} \bullet K_{n}\right)$ is $\mathrm{n}+1$.
Consider the set of colors $\mathrm{C}=\left\{c_{1,}, c_{2,}, \ldots, c_{3 n}\right\}$
To make the coloring as b-chromatic consider the following procedure
$\mathrm{c}\left(a_{i}\right)=1$, if $\mathrm{i} \equiv 1 \bmod 3$
$\mathrm{c}\left(a_{i}\right)=\mathrm{n}+1$, if $\mathrm{i} \equiv 2 \bmod 3$
$\mathrm{c}\left(a_{i}\right)=2 \mathrm{n}+1$, if $\mathrm{i} \equiv 0 \bmod 3$
$\mathrm{c}\left(b_{i j}\right)=\mathrm{j}, 1 \leq \mathrm{j} \leq \mathrm{n}$ for each $\mathrm{i} \equiv 2 \bmod 3$
$\mathrm{c}\left(b_{i j}\right)=\mathrm{j}+\mathrm{n}, 1 \leq \mathrm{j} \leq \mathrm{n}$ for each $\mathrm{i} \equiv 0 \bmod 3$
$\mathrm{c}\left(b_{i j}\right)=\mathrm{j}+2 \mathrm{n}, 1 \leq \mathrm{j} \leq \mathrm{n}$ for each $\mathrm{i} \equiv 1 \bmod 3$
The above coloring procedure gives that $\varphi\left(P_{n} *\right.$ $\left.K_{n}\right) \geq 3 n$.
If we introduce any new color $c_{3 n+1}$ to any vertex in the graph, that will not adjacent to all other color class, therefore b-coloring with $c_{3 n+1}$ colors is not possible. Thus we have $\varphi\left(P_{n} \bullet K_{n}\right) \leq 3 n$. Hence, φ $\left(P_{n} \cdot K_{n}\right)=3 n$.
Remark : $\varphi\left(P_{n} \bullet K_{n}\right)=2 \mathrm{n}, \mathrm{n} \leq 4$.

Theorem 2.2

For $\mathrm{n} \geq 5$, the b-chromatic number of extended corona of P_{n} with $K_{1, n}$ is 6
i.e., $\varphi\left(P_{n} \bullet K_{1, n}\right)=6$.

Proof

Let $\left\{a_{1}, a_{2,}, \ldots, a_{n,}\right\}$ be the vertices of Path graph P_{n} and $\left\{b_{1,}, b_{2,}, \ldots, b_{n,}\right\}$ and $\{\mathrm{w}\}$ be the vertices of Star graph $K_{1, n}$. Let w be the central vertex of Star, w is adjacent to each $\left\{b_{i}: 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$
i.e., $\mathrm{V}\left(P_{n}\right)=\left\{a_{1,}, a_{2,}, \ldots, a_{n}\right\}$ and $\mathrm{V}\left(K_{1, n}\right)=$ $\left\{b_{1,}, b_{2,}, \ldots, b_{n_{3}}\right\} \cup\{\mathrm{w}\}$
By the definition of extended corona each vertex of P_{n} is adjacent to corresponding copy of $K_{1, n}$ and each copies of $K_{1, n}$ is adjacent to their neighborhood copies of $K_{1, n}$.
$\mathrm{V}\left(P_{n} \cdot K_{1, n}\right)=\left\{a_{i}: 1 \leq i \leq n\right\} \quad \mathrm{u}$
$\left\{\quad b_{i j}: 1 \leq i \leq n, 1 \leq j \leq n \quad\right\} \quad \cup$
$\left\{w_{i}: 1 \leq i \leq n\right\}$
Order of the graph $\| \mathrm{V}\left(P_{n} \cdot K_{1, n}\right) \mid$ is $n^{2}+2 n$, Size of the graph $\left\|\mathrm{E}\left(P_{n} \cdot K_{1, n}\right)\right\|$ is $n^{3}+3 n^{2}+n-2$), maximum degree $\Delta\left(P_{n} \cdot K_{1, n}\right)$ is $3 \mathrm{n}+3$ and minimum degree δ $\left(P_{n} \bullet K_{1, n}\right)$ is $\mathrm{n}+2$.
Consider the set of colors $\mathrm{C}=\left\{c_{1}, c_{2,}, \ldots, c_{6}\right\}$
To make the coloring as b -chromatic consider the following procedure
$\mathrm{c}\left(w_{1,}, w_{2,}, \ldots, w_{n_{9}}\right)=(6,1,2,3,4,5,6,1,2 \ldots)$
$\mathrm{c}\left(b_{i j}\right)=1,1 \leq \mathrm{i} \leq \mathrm{n}$ for each $\mathrm{j} \equiv 5 \bmod 6$
$\mathrm{c}\left(b_{i j}\right)=2,1 \leq \mathrm{i} \leq \mathrm{n}$ for each $\mathrm{j} \equiv 0 \bmod 6$
$\mathrm{c}\left(b_{i j}\right)=3,1 \leq \mathrm{i} \leq \mathrm{n}$ for each $\mathrm{j} \equiv 1 \bmod 6$
$\mathrm{c}\left(b_{i j}\right)=4,1 \leq \mathrm{i} \leq \mathrm{n}$ for each $\mathrm{j} \equiv 2 \bmod 6$
$\mathrm{c}\left(b_{i j}\right)=5,1 \leq \mathrm{i} \leq \mathrm{n}$ for each $\mathrm{j} \equiv 3 \bmod 6$
$\mathrm{c}\left(b_{i j}\right)=6,1 \leq \mathrm{i} \leq \mathrm{n}$ for each $\mathrm{j} \equiv 4 \bmod 6$
For $1 \leq \mathrm{i} \leq 6, \mathrm{c}\left(a_{i}\right)=\mathrm{i}$

For $7 \leq \mathrm{i} \leq \mathrm{n}, \quad \mathrm{c}\left(a_{7}, a_{8}, \ldots, a_{n}\right)=$ (1,2,3,4,5,6,1,2,...)
The above coloring procedure gives that $\varphi\left(P_{n} *\right.$ $K_{1, n} \geq 6$.
If we introduce any new color c_{7} to any vertex in the graph that will not adjacent to all other colors in the color set, therefore b-coloring with 7 colors is not possible. Thus we have, $\quad \varphi\left(P_{n} \cdot K_{1, n}\right) \leq$ 6. Hence $\varphi\left(P_{n} \cdot K_{1, n}\right)=6, \mathrm{n} \geq 5$.

Theorem 2.3

For $n \geq 3$ and $n \neq 4$, the b-chromatic number of extended corona of C_{n} with K_{n} is $3 n$.
i.e., $\varphi\left(C_{n} \cdot K_{n}\right)=3 n$.

Proof

Let $\left\{a_{1}, a_{2,}, \ldots, a_{n_{1}}\right\}$ be the vertices of Cycle graph C_{n} and $\left\{b_{1}, b_{2,}, \ldots, b_{n}\right\}$ be the vertices of Complete graph K_{n}
i.e., $\mathrm{V}\left(C_{n}\right)=\left\{a_{1,}, a_{2,}, \ldots, a_{n,}\right\}$ and $\mathrm{V}\left(K_{n}\right)=$ $\left\{b_{1}, b_{2,}, \ldots, b_{n}\right\}$
By the definition of extended corona each vertex of C_{n} is adjacent to corresponding copy of K_{n} and each copies of K_{n} is adjacent to their neighborhood copies of K_{n}.
$\mathrm{V}\left(C_{n} \cdot K_{n}\right)=\left\{a_{i}: 1 \leq i \leq n\right\} \quad \mathrm{U}$ $\left\{b_{i j}: 1 \leq i \leq n, 1 \leq j \leq n\right\}$.
Order of the graph $\left\|\mathrm{V}\left(C_{n} \bullet K_{n}\right)\right\|$ is $\mathrm{n}(\mathrm{n}+1)$, Size of the graph $\left\|\mathrm{E}\left(C_{n} \cdot K_{n}\right)\right\|$ is $\frac{1}{2}\left(3 n^{3}+n^{2}+2 n\right)$, maximum degree $\Delta\left(C_{n} \bullet K_{n}\right)$ is $3 n$ and minimum degree δ $\left(C_{n} \bullet K_{n}\right)$ is $\mathrm{n}+2$.
Consider the set of colors $\mathrm{C}=\left\{c_{1,}, c_{2,}, \ldots, c_{3 n}\right\}$
To make the coloring as b -chromatic consider the following procedure
Assign the color c_{1} for a_{3} and a_{n}
Assign the color c_{n+1} for $a_{1}, a_{4}, a_{6}, a_{8}, \ldots$
Assign the color $c_{2 n+1}$ for $a_{2}, a_{5}, a_{7}, a_{9}, \ldots$
For $1 \leq \mathrm{i} \leq \mathrm{n}$, Assign the color c_{n+i} for $b_{2 i}, b_{5 i}, b_{7 i}, b_{9 i}, \ldots$
For $1 \leq \mathrm{i} \leq \mathrm{n}$, Assign the color $c_{2 n+i}$ for $b_{3 i}$ and $b_{n i}$
For $1 \leq \mathrm{i} \leq \mathrm{n}$, Assign the color c_{i} for $b_{1 i}, b_{4 i}, b_{6 i}, b_{8 i}, \ldots$
The above coloring procedure gives that $\varphi\left(C_{n} *\right.$ $K_{n} \geq 3 n$.
If we introduce any new color $c_{3 n+1}$ to any vertex in the graph that will not adjacent to all other colors in the color set, therefore b-coloring with $3 \mathrm{n}+1$ colors is not possible. Thus we have, $\varphi\left(C_{n} *\right.$ $\left.K_{n}\right) \leq 3 \mathrm{n}+1$. Hence $\varphi\left(C_{n} \cdot K_{n}\right)=3 \mathrm{n}, \mathrm{n} \geq 3$ and n $\neq 4$.

Remark : $\varphi\left(C_{4} * K_{4}\right)=8$.

Theorem 2.4

For $n \geq 3$ and $n \neq 4$, the b-chromatic number of extended corona of C_{n} with $K_{1, n}$ is 6
i.e., $\varphi\left(C_{n} \cdot K_{1, n}\right)=6$.

Proof

Let $\left\{a_{1}, a_{2,}, \ldots, a_{n_{3}}\right\}$ be the vertices of cycle graph C_{n} and $\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ and $\{w\}$ be the vertices of Star graph $K_{1, n}$. Let w be the central vertex of Star, w is adjacent to each $\left\{b_{i}: 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$
i.e., $\mathrm{V}\left(C_{n}\right)=\left\{a_{1}, a_{2,}, \ldots, a_{n,}\right\}$ and $\mathrm{V}\left(K_{1, n}\right)=$ $\left\{b_{1}, b_{2,}, \ldots, b_{n_{1}}\right\} \cup\{\mathrm{w}\}$
By the definition of extended corona each vertex of C_{n} is adjacent to their corresponding copy of $K_{1, n}$ and each copies of $K_{1, n}$ is adjacent to their neighborhood copies of $K_{1, n}$.
$\mathrm{V}\left(C_{n} \cdot K_{1, n}\right)=\left\{a_{i}: 1 \leq i \leq n\right\}$
$\left\{\quad b_{i j}: 1 \leq i \leq n, 1 \leq j \leq n \quad\right\} \quad \cup$ $\left\{w_{i}: 1 \leq i \leq n\right\}$
Order of the graph $\left|\mathrm{V}\left(C_{n} \cdot K_{1, n}\right)\right|$ is $n^{2}+2 n$,
Size of the graph $\left\|\mathrm{E}\left(C_{n} \cdot K_{1, n}\right)\right\|$ is
$n^{3}+4 n^{2}+3 n \quad$), maximum degree
$\Delta\left(C_{n} \cdot K_{1, n}\right)$ is $3 n$ and minimum degree δ
$\left(C_{n} \cdot K_{1, n}\right)$ is $\mathrm{n}+3$.
Consider the set of colors $\mathrm{C}=\left\{c_{1}, c_{2,}, \ldots, c_{6}\right\}$
To make the coloring as b -chromatic consider the following procedure
For $1 \leq \mathrm{i} \leq 6$, assign the color c_{i} to a_{i}
For $7 \leq \mathrm{i} \leq \mathrm{n}$, assign the colors $4,2,4,2, \ldots$ to consecutive vertices of $a_{i}{ }^{\prime}$ s
For $1 \leq \mathrm{i} \leq 6$, assign the color c_{i} to w_{i+1}, for $8 \leq \mathrm{i}$ $\leq \mathrm{n}$ assign the colors $1,2,1,2, \ldots$ to consecutive vertices of w_{i} 's and c_{6} to w_{1}
For $1 \leq \mathrm{i} \leq \mathrm{n} \mathrm{c}(3,4,5,6,1,2,3,4,5,6,1,2, \ldots)=$ $\left(b_{1 i}, b_{2 i}, b_{3 i}, \ldots, b_{n i}\right)$
The above coloring procedure gives that $\varphi\left(C_{n}\right.$ * $\left.K_{1, n}\right) \geq 6$.
If we introduce any new color c_{7} to any vertex in the graph that will not adjacent to all other colors in the color set, therefore b-coloring with 7 colors is not possible. Thus we have, $\quad \varphi\left(C_{n} \cdot K_{1, n}\right) \leq$ 6. Hence $\varphi\left(C_{n} \cdot K_{1, n}\right)=6, \mathrm{n} \geq 3$ and $\mathrm{n} \neq 4$.

Remark : $\varphi\left(C_{4} \cdot K_{1,4}\right)=4$.

Theorem 2.5

For $\mathrm{n} \geq 3$, the b -chromatic number of extended corona of K_{n} with $K_{1, n}$ is 2 n i.e., $\varphi\left(K_{n} \bullet K_{1, n}\right)=2 n$.

Proof

Let $\left\{a_{1,}, a_{2,}, \ldots, a_{n,}\right\}$ be the vertices of complete graph K_{n} and $\left\{b_{1}, b_{2,}, \ldots, b_{n_{3}}\right\}$ and \{w\}be the vertices of Star graph $K_{1, n}$. Let w be the central vertex of Star, w is adjacent to each $\left\{b_{i}: 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$ i.e., $\mathrm{V}\left(K_{n}\right)=\left\{a_{1,}, a_{2,}, \ldots, a_{n_{2}}\right\}$ and $\mathrm{V}\left(K_{1, n}\right)=$ $\left\{b_{1}, b_{2}, \ldots, b_{n,}\right\} \cup\{\mathrm{w}\}$
By the definition of extended corona each vertex of K_{n} is adjacent to their corresponding copy of $K_{1, n}$ and each copies of $K_{1, n}$ is adjacent to their neighborhood copies of $K_{1, n}$.
$\left.\begin{array}{cc}\mathrm{V}\left(K_{n} \cdot K_{1, n}\right)=\left\{a_{i}: 1 \leq i \leq n\right\} \quad \mathrm{U} \\ \{b: 1<i \leq n, 1 \leq j \leq n\end{array}\right\}$
$\left\{\quad b_{i j}: 1 \leq i \leq n, 1 \leq j \leq n \quad\right\} \quad \cup$ $\left\{w_{i}: 1 \leq i \leq n\right\}$
Order of the graph $\left|\mathrm{V}\left(K_{n} \cdot K_{1, n}\right)\right|$ is $n^{2}+2 n$, Size of the graph $\left\|\mathrm{E}\left(K_{n} \bullet K_{1, n}\right)\right\|$ is
$\frac{1}{2}\left(n^{4}+2 n^{3}+3 n^{2}\right)$, maximum degree $\Delta\left(K_{n} \cdot K_{1, n}\right)$ is $n^{2}+n$ and minimum degree δ $\left(K_{n} \cdot K_{1, n}\right)$ is 2 n .
Consider the set of colors $\mathrm{C}=\left\{c_{1,}, c_{2,}, \ldots, c_{2 n}\right\}$
To make the coloring as b-chromatic consider the following procedure
For $1 \leq \mathrm{i} \leq \mathrm{n}-1$, assign the color c_{i+1} to a_{i} and c_{1} to a_{n}
For $1 \leq \mathrm{i} \leq \mathrm{n}$, assign the color c_{i} to w_{i}
For $1 \leq \mathrm{i} \leq \mathrm{n}$, assign the color c_{n+i} to bij, for each $1 \leq \mathrm{j} \leq \mathrm{n}$
The above coloring procedure gives that $\varphi\left(K_{n} *\right.$ $\left.K_{1, n}\right) \geq 2 \mathrm{n}$.
If we introduce any new color $c_{2 n+1}$ to any vertex in the graph that will not adjacent to all other colors in the color set, therefore b-coloring with $2 \mathrm{n}+1$ colors is not possible. Thus we have, $\varphi\left(K_{n} *\right.$ $\left.K_{1, n}\right) \leq 2 \mathrm{n}$. Hence $\varphi\left(K_{n} \cdot K_{1, n}\right)=2 \mathrm{n}, \mathrm{n} \geq 3$.

Theorem 2.6

For $\mathrm{n} \geq 3$, the b -chromatic number of extended corona of $K_{1, n}$ with K_{n} is 2 n .
i.e., $\varphi\left(K_{1, n} \bullet K_{n}\right)=2 n$.

Proof
Let $\left\{a_{1,}, a_{2,}, \ldots, a_{n_{n}}\right\}$ and $\{\mathrm{w}\}$ be the vertices of star graph $K_{1, n}$. Let w be the central vertex of Star, w is adjacent to each $\left\{a_{i}: 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$ and $\left\{b_{1}, b_{2,}, \ldots, b_{n}\right\}$ be the vertices of Complete graph K_{n}
i.e., $\mathrm{V}\left(K_{1, n}\right)=\left\{a_{1,} a_{2,}, \ldots, a_{n,}\right\} \cup\{\mathrm{w}\}$ and $\mathrm{V}\left(K_{n}\right)=$ $\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$
By the definition of extended corona each vertex of $K_{1, n}$ is adjacent to their corresponding copies of
K_{n} and corresponding copy K_{n} of the vertex w is adjacent to all other copies of K_{n}.
$\mathrm{V}\left(K_{n} \cdot K_{n}\right)=\left\{a_{i}: 1 \leq i \leq n\right\} \quad \mathrm{U}$
\{ $\left.\quad b_{i j}: 1 \leq i \leq n, 1 \leq j \leq n \quad\right\}$
$\cup\left\{w_{i}: 1 \leq i \leq n\right\}$.
Order of the graph $\left|\mathrm{V}\left(K_{1, n} \cdot K_{n}\right)\right|$ is $n^{2}+2 n+1$, Size of the graph $\| \mathrm{E}\left(K_{1, n} \cdot K_{n}\right) \mid$ is $\frac{1}{2}\left(3 n^{3}+n^{2}+3 n\right)$, maximum degree $\Delta\left(K_{1, n} \cdot K_{n}\right)$ is $n^{2}+1$ and minimum degree $\delta\left(P_{n} \cdot K_{n}\right)$ is 2 n .
Consider the set of colors $\mathrm{C}=\left\{c_{1,}, c_{2}, \ldots, c_{2 n}\right\}$
To make the coloring as b -chromatic consider the following procedure
Assign the color c_{1} to w
For $1 \leq \mathrm{i} \leq \mathrm{n}$ assign the color c_{i+1} to a_{i}
For $1 \leq \mathrm{i} \leq \mathrm{n}$ assign the color c_{1} to $b_{i 1}$
For $1 \leq \mathrm{i} \leq \mathrm{n}$ assign the color c_{n+j} to $b_{i j}$ for each fixed $\mathrm{j}=1,2, . ., \mathrm{n}$
The above coloring procedure gives that $\varphi\left(K_{1, n} *\right.$ $K_{n} \geq 2 \mathrm{n}$.
If we introduce any new color $c_{2 n+1}$ to any vertex in the graph that will not adjacent to all other colors in the color set, therefore b-coloring with $2 \mathrm{n}+1$ colors is not possible. Thus we have, φ
$\left(K_{1, n} \bullet K_{n}\right) \leq 2 \mathrm{n}$. Hence $\varphi\left(K_{1, n} \bullet K_{n}\right)=2 \mathrm{n}, \mathrm{n}$ ≥ 3.

REFERENCES

1. Chandrashekar Adiga, Rakshith B.R and K.N Subha Krishna (2016). Spectra of extended neighbourhood corona and extended corona of two graphs. Electronic Journal of Graph Theory and its Applications 101-110.
2. Indulal, G. (2011). The spectrum of neighbourhood corona of graphs. Kragujevac Journal of Mathematics 493-500
3. Irving, R.W. and Manlove, D.F. (1999). The bchromatic number of a graph. Discrete Applied Mathematics
4. Kouider, M. and Maheo, M. (2002). Some Bounds for the b-chromatic number of Graph. Disc. Math. 267.
5. Lisna, P.C. and Sunitha, M.S. (2015). A Note on the b-Chromatic Number of Corona of Graphs, Journal of Interconnection Networks 15 (1 and 2).
6. Marko Jakovac and Sandi Klavzar, (2010). The b-chromatic number of cubic graphs. Graphs and Combinatorics 107-118.
7. Vernold Vivin, J. and Venkatachalam, M. (2012). The b-chromatic number of corona graphs. Utilitas Math. 299-307.

About The License

The text of this article is licensed under a Creative Commons Attribution 4.0 International License

