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ABSTRACT

We consider a batch arrival queueing system with three stage heterogeneous service provided by a
single server with different (arbitrary) service time distributions. Each customer undergoes three stages of
heterogeneous service. As soon as the completion of third stage of service, if the customer is dissatisfied with
his service, he can immediately join the tail of the original queue. The vacation period has two heterogeneous
phases. After service completion of a customer the server may take a phase one Bernoulli vacation. Further,
after completion of phase one Bernoulli vacation the server may take phase two optional vacation. The
vacation times are assumed to be general. In addition we assume restricted admissibility of arriving batches
in which not all batches are allowed to join the system at all times. The time dependent probability generating
functions have been obtained in terms of their Laplace transforms and the corresponding steady state results
have been obtained explicitly. Also the mean number of customers in the queue and the system are also

derived. Some particular cases and numerical results are discussed.

Keywords: Heterogeneous Service, Multiple Adaptive Vacation, Closed Down Times.

1.INTRODUCTION

During the last three or four decades, queueing
models with vacations had been the subject of
interest to queueing theorists of deep study because
of their applicability and theoretical structures in
real life situations such as manufacturing and
production systems, computer and communication
systems, service and distribution systems, etc. The
M X /G/1 queue has been studied by numerous
authors including Scholl and Kleinrock 1983, Gross
and Harris, 1985, Doshi 1986, Kashyap and
Chaudhry 1988, Shanthikumar 1988, Choi and Park
1990 and Madan 2000, 2005. Krishnakumar et al,
2002 considered an M/G/1 retrial queue with
additional phase of service. Madan and Anabosi
2003, have studied a single server queue with
optional server vacations based on Bernoulli
schedules and a single vacation policy. Madan and
Choudhury 2005, have studied a single server queue
with two phase of heterogeneous service under
Bernoulli schedule and a general vacation time.
Thangaraj and Vanitha 2010 have studied a single
server M X /G/1 feedback queue with two types of
service having general distribution. Levy and
Yechiali 1976, Baba 1986, Keilson and Servi 1986,
C.Gross and C.M. Harris 1985, Takagi 1992,
Borthakur and Chaudhury 1997, Cramer 1989, and
many others have studied vacation queues with
different vacation policies. In some queueing
systems with batch arrival there is a restriction such
that not all batches are allowed to join the system at
all time. This policy is named restricted admissibility.

Madan and Choudhury 2005 proposed anqueueing
system with restricted admissibilty of arriving
batches and Bernoulli schedule server vacation. In
this paper, we consider a batch arrival queueing
system with three stage heterogeneous service
provided by a single server with different (arbitrary)
service time distributions. Each customer undergoes
three stage heterogeneous service. As soon as the
completion of third stage of service, if the customer
is dissatisfied with his service, he can immediately
join the tail of the original queue as a feedback
customer with probability p to repeat the service
until it is successful or may depart the system with
probability 1 — p if service happens to be successful.
The vacation period has two heterogeneous phases.
Further, after service completion of a customer the
server may take phase one vacation with probability
r or return back to the system with probability 1 —r
for the next service. After the completion of phase
one vacation the servermay take phase two optional
vacation with probability 8 or return back to the
system with probabilityl — 0. In addition we assume
restricted admissibility of arriving batches in which
not all batches are allowed to join the system at all
times. This paper is organized as follows. 2.
Supplementary variable technique. The
mathematical description of our model is given in
section 3. Definitions and Equations governing the
system are given in section 4. The time dependent
solution have been obtained in section 5. and
corresponding steady state results have been
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derived explicitly in section 6. Mean queue size and
mean system size are computed in section

7. Some particular cases are given in section
8. Conclusion are given in section 9 respectively.
2. SUPPLEMENTARY VARIABLE TECHNIQUE

2.1. PGF of MX/G/1 Model without Vacations or
Closed-down time Jobs

2.2. Description of the Model and Basic Equations

Let
Px,t=P{Nt=1,Nt=j,x<S5t
1j s q

<x+dt,Yt=0,j=0}
The basic steady state equations are
Poox —At, t + At = Poox, t 1 — AAt
+Py 0,t At 1

P10X—At,t+At=P1ox,t1—lAt
+P11 O,tSX At+P00 O,tlS x At (2)
Pijx — At t + At

=P1jx,t1—/1At

+P1j+1 0,tsxAt

j
+ P x, tAg A 3
1j—k k

k=1
2.3. Queue Size Distribution
Move the first coefficients P;;(x, t)of (1) - (3) to the

left side and take the limit as At — 0, we get

PO()X =—AP00 X +P10 0 (4)
P x =+ x+P O0Osx+P 0Asx
10 10 11 00
(5)
Plf-x =
_APU X +P1j+1 0sx +
szl Plj—k ()Agr (6)

The Laplace Stieltje’s Transform of P; (x) is defined
as
m
P; 6 =
0
Therefore the Laplace Stieltje’s Transform of P’ (x)
ij

e %*P; xdx

is given by
m m
—6x' —0x —0x
e Pij xdx=e Pyx— (—0)e Py xdx
0 0

= BPL] 9 - Pij (0)

So if S(0) is the LST of the service time, the steady
state queue size equations are given by

9P109 —P100 =AP109 —P11059 —
PoOVS ()  (7)

9P1j 0 —P1j 0 =lP10 7] —P1j+1 0S6 —
Po 0456 +7 oy Prjae (0Agk 8

to apply the technique of Lee, H. S. [6], we define the
following PGFs
P, z,60 = 7/”:05’ 0z ,P;z 0=

m Plj 02z (9)

j=0
Multiply Eq. (7) by z° and Eq. (8) by z/ (j = 1) and
take the summation from j = 0 tom, we have

m m

6 P1j9 zj — PUO zJ

j=0 j=0
m

=/1P1]‘9 Vil

j=0
m

—z1 P1j+10Zj+159
j=0
m
— P1j+1 6 zj —k zk Agk

j=1k=1
—AS6 Po()OZO.

Using the LST in (9), we have

6P, 2,6 — P, z,0 =AP, 2,66 —z!' P, z,0 —
PwOS 6—Am k=1 Zkng1Z,9—259 POOO
(10)
whereP1y= APgpsince P’ x = 0 in (4)

00
and
m m

grzk=PX=kzk=Gz.

k=1 k=1
Hence
0—A+AGzPyz0=1—-2z1 S 0Pz 0+
S0 z1-1 Po() 0 (11)
Put8 =1 — AG(z) in (11), we have
z—S A—-1G(2)
PlZ,O
z —1
=AS -Gz POO (0)
z
P12,0
—ASA—AGzz—1PyO0 (]_2)
z—S A—-AGz

By substituting (12) in (11), we obtain
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6—A+AGzPiz0
S0—z

SA—-AGz
z—SA—AGz

1—2z
z

+56 PO

=21 00

b)

zSO0—-S A—-AGz
z—S A1—1G z

Poo0

A1—2z850-SA1-AGz
P1Z,9=

0—-A+AGzz—S A—AGz

Py O (13)

Let P z be the PGF of the queue size at an arbitrary
time epoch. Then P z is the sum of the PGFs of
queue size at server completion epoch and idle time
epoch. So

P z =P1 Z,O +P00 0 (14)

By substituting 8 = 0 in the equation (13), the 9
equation (14) becomes

Al—z

1-SA1-AGz
—A+1AGz
z—S A—AGz
1-2z1-SA-AGz—-1-Gz
z—S A—AGz

+1Py0

Py 0

Gz —1z—SA—-AGz

Pz
1-2z1-Z-SA-AGz—-1-Gz

z—S A—1AGz

Gz—1z—-S A1—1Gz

which represents the PGF of number of customers in
queue in an arbitrary time epoch.

3. MATHEMATICAL DESCRIPTION OF THE MODEL

We assume the following to describe the
equueing model of our study.

a) Customers arrive at the system in batches of
variable size in a compound Poisson processand
they are provided one by one service on a first
come - first served basis.

g)

Let AC; dt(i = 1) be the first order probability
that a batch of i customers arrives at the system
PRI PTG =t anan
> 0 is the arrival rate of batches.
(b)A single server provides three stages of
service for each customer, with the service times
having general distribution. Let Bi(v) and bi(v) (I
=1, 2, 3) be the distribution and the density
function of i stage service respectively.
The service time follows a general (arbitrary)
distribution with distribution function B;s and
density function b; s . Let p; x dx be the
conditional probability density of service
completion during the interval (x, x + dx], given
that the elapsed time is x, so that

b;x
x = .
’ e 1,23,..
and therefore,
b; s =,ul-se_0‘““k i=123,..

Moreover, after the completion of third stage
of service, if the customer is dissatisfied with
his service, he can immediately join the tail of
the original queue as a feedback customer for
receiving another service with probability .
Otherwise the customer may depart forever
from the system with probability 1 —p .
Further, we do not distinguish the new arrival
with feedback.

As soon as the third stage of service is
completed, the server may take phase one
Bernoulli vacation with probability r or may
continue staying in the system wit

probability 1 — r. After completion of phase
one vacation the server may take phase two
optional vacation with probability 8 or return
back to the system with probability 1 — 6 On
returning from vacation the server starts
instantly serving the customer althe head of
the queue, if any.

The server’s vacation time follows a general
(arbitrary) distribution with distribution
function c; t and density function ¢;t . Let

y: x dx be the conditional probability of a
completion of a vacation during the interval
(x, x + dx] given that the elapsed vacation
time is x, so that

cix

,i1=1,2, ... and therefore

1—c;i x

yx=

i
t
vit=vy;t e—ovixdx ;=17

The restricted admissibility of batches in
which not all batches are allowed to join the
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system at all times. Leta 0 < @ < 1 and
B 0 < B < 1 be the probability that an
arriving batch will be allowed to join the
system during the period of server’s non-
vacation period and vacation period
respectively.

h) Various stochastic processes involved in the
system are assumed to be independent of each
other.

4. DEFINITIONS AND EQUATIONS GOVERNING
THE SYSTEM

We defineP ! x, t = Probability that at time
n

t, the server is active providing first stage of service
and there aren (n = 0 ) customers in the queue

excluding the one being served and the elapsed

se{v1ce tlmgl fori this customer is x. Consequently
x,t dx denotes the probability

n 0o n
that at time t there are n customers in the queue
excluding one customer in the first stage of service
irrespective of the value of x.

Pn2 x, t = Probability that at time ¢, the server is

active providing second stage of service and there
aren (n = 0) customers in the queue excluding the
one being served and the elapsed service time for
this customer is x.

2 m2
Consequently P, t = oPnx t dx denotes the
probability that at time t there are n customers in
the queue excluding one customer in the second
stage of service irrespective of the value ofx.

P3 x, t = Probability that at time ¢, the server is

n
active providing third stage of service and there are
n (n = 0 )customers in the queue excluding the one
being served and the elapsed service time for this
customer isx.
mp3 x, t dx denotes the

0 n

probability that at time t there are n customers in
the queue excluding one customer in the third stage
of service irrespective of the value ofx.

c1x, t = Probability that at time ¢, the server is
n

Consequently P St =
n

under phase one vacation with elapsed vacation time

x and there are nn=0 ,{;usgomers in the queue.

Consequently ¢~ t = x,t dx denotes the
n 0o n

probability that at time t there are n customers in

the queue and the server is under phase one

vacation irrespective of the value of x.

¢,? x, t = Probability that at time ¢, the server is
under phase two vacation with elapsed vacationtime

x and there are,nn =0 cusztomers in the queue.
Consequently c”t = x,t dx denotesthe
n 0 n

probability that at time t there are n customers in
the queue and the server is under phase two
vacation irrespective of the value of x.

Q(t) = Probability that at time t, there are no
customers in the queue and the server is idle but
available in the system. The model is then, governed
by the following set of

differential-difference equations:
iPlx,t+aP1&t+/1+uxP1x,t=

ax 0 ot O 1 0

Al—a B! xt (16)

9 pt 0 p! 1

" xt+ af" xt+A+puxP, xt
=A1—aPlxt

n
n

+ Aag Plyt,

k=1
>1 17
_P?2xt+ sz t+A+uxP2x,t=
ax 0 at O 2 0
ﬂél—a R? x,t (18)
Pzx,t+ P2x,t+A+uxP2xt
oxn atn 2 n
=Al—aP2xt
n n
+ Aac PZx,t,
kn—k
k=1
n=1 (19)
iP3x,t+aP3&t+/1+uxP3x,t=
9x 0 3 ot 0 3 0
Al—a Py, xt (20)
d d
P3x,t+ P3x,t+A+uxP3xt
axn Jtn 3 n
=A1—-aP3yt
n
+AacP3x,t,
kK n—k
k=1
n=1 21
a a
clx,t+ clx,t+A+yXx)clx t=
3x 0 3_0 v 1
1-Bcixt
0, 1 L
—cm Xt+ ﬁcn x, t+ +yxc1 n x, t
= 211-p ¢! xt (22)
a a
_clxt+ clxt+A+yxcixt
dxn atn 1 n

=/11—[>’c135,t
n

+ABcClyt,_,
k=1
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n=>1 (23)
a

_c? xt+ a_cz x,t A+y x c? x, t=
ox 0 PR 2 0
A1—=0 ¢? x,t (24)
a
cix,t+ cixt+A+yxcixt
ox " atn 2 n
=Al—-PFc2xt
n
+ ABa cixt,
k=1
n>1 (25)

d

—_Qt+A0t=1—a A0t

dtQ Q aAQ

m
yixCly

0

+1-6 x, td&
m
+yxC2x,tdx+ (1
o 2 0
m
-p) 1—-r ,u3xP3 x,t dx (26)
0
0

The above equations are to be solved subject to the
following boundary conditions:

P1 0,t =alC Qt
n n+1

+1-6 myClx,tdx
1n+1
m
+ y x C? x,t dx
2 n+1
0

+pl—rm
+1-p 1-rmn=0 27)
P2 0,t = m,u x P! x, tdx,n
n 1 n
0
>0 28
3 m 2
P, O, t=pxP,x,tdx,n
0
>0 29
m

Clo,t=r1—puxP3x,tdx ,
0

m
+rp,ux P2 x tdy,
0

n=>0 30
m

C20,t=0yxClxtdx,n
0
>0 31

We assume that initially there are no customers in
the system and the server is idle. So the initial
conditions are

C01'0=Cf%=0,j=1,2,...andQ0

=1land Pi0=0,forn=0,1,2, ...,
i=1,23... (32)

5. .GENERATING FUNCTIONS OF THE
QUEUE LENGTH: THE TIME - DEPENDENT
SOLUTION

In this section we obtain the transient solution for
the above set of dfferential- difference equations.

5.1. Theorem

The system of differential difference
equations to describeanM ¥ /G/1 queue with three
stages of heterogeneous service, feedback and
Bernoulli vacation and optional server vacation with
restricted admissibility are given by equations (16) to
(31) with initial condition (32) and the generating
functions of transient solution are given by equations
(90) to (94).

Proof: We define the probability generating
functions,

m
Pix,z,t=z"Pix, t;Pizt
n=0
n i
=z P, t,for
n=0
i =1,2,3... (33)
Cix,z,t=z"nCixt;
n
n=0
m.
Cizyt=znC't,C z
n=0 "
m
=cz"
n
n=0
for j =12.. (34)

which are convergent inside the circle given by z < 1
and define the Laplace transform of a function f(t)
as

Fs = "estf tdt Rs>D0. (35)
0

Taking the Laplace transform of equations (16) to
(31) and using (32), we obtain

Jd1

(XPO xX,s+s+da+ux

1

Py x,5s =0 (36)
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01 1

a—an,s+s+/1a+u1xPn xS
* n
1

=AaC KPn_;:x, s,

k=1
n>1 37
d2 _2
6_P° X,S+s+Ada+ ux Py x,8,n
X
=0 (38)
d_ 2 2
=P, x,5+s+Aa+ u(x) P, X, S
Oy .
2
=Aa kP, x,s,n=1 (39)
k=1
d_ 3 3
6_P° X, S+ s+ da+ uz(x) Py X, S
X
=0 (40)
d3 _3
_—P,x,s+s+Aa+ uzx P, X, S
x n
cP?xs,n=>1
=Aak n—k (41)
k=1
01 1
O_CO xX,s+s+A+y1xCy X, S
X
=0 (42)
d1 _1
a_C” X Ss+s+A+yi1(x)Cy, X, S
X n
=B Ck_&r&’k s,n=1 (43)
k=1
d2 _2
a—Co x,s+s+ A8+ vy,xCy X, S
X
=0 (44)
d2 _2
O_C" X,S+s+AB+y,xChx,s
X n 5
=ABcC xs,
k n—k
k=1
n>1 (45)
s+ Aa@s
m

1
=+1—9y16cC0x,sdx
m m
+ 1-p -r

,u3(x)i’0 3x, s dx (46)
0 0

1

Po O,s=alc,+1Q0s1—6

m m

1 2
Y1X Cpre1x,5dx +y2x Cpye1x,5dx
0 0
+pl)—r
m 3

U3 xIél X, sdx
0

+1-p1
qu3
- rB,  x,suzxdx,n
0
>0 47)
2 m 1
P, 0,5 = U1 x B, x sdx,
0
n=0 (48)
3 " 2
P, 0s = U xB  xsdx,n
>0 (49)
1

En 0,s
m
=r1l-p U x P3x,sxdx
3 n

0
3

+rpusx Proq1x,s xdx,
0

m

n>0 (50)
2 " 1
C, 0,s =08 yixG xsdx,n
0
>0 (51)

Now multiplying equations (37), (39), (41), (43) and
(45) by z" and summing over n from 1 tom, adding
to equations (36), (38), (40), (42), (44) and using the
generating functions defined in (33) and (34) we get

0

pl X, z,s+s+Aal—Cz
ax"

_1
+ux P X, 2,5
=0 (52)
d2
—Po x,z,s+s+Aa(1—-Cz)

q
_2

+u(x) P x,25s

=0 (53)
in X, Z,S
ax

-3

+ s+Ada1—-C z +uzx P x,25s
=0 54
d1
— X, Z, S
axc0

1
+ s+A8(1—-Cz)+yi(x) C x,2s
=0 (55)
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d2

aCQ X,z S ,
+5+Ap1—-Cz+y,xC  xzs
=0 (56)

For the boundary conditions, we multiply both sides
of equation (47) by z" sum over n from 0 to m, and
use the equation (33) and (34) to get

_1
zP 0,zs
_ m _1

=ailcz Q s + 1—-06 yix C x,z,5dx

m

2

+ y2x C x,2,5 dx

0

m 3

+pz1—ruzxP x,z,sdx
0

mn 3
+1—p1—ru3x§’ X, z,s dx
m .

- 1-0 yxClx,sdx
1 0
0
m _2
_y&xCo x,sdx—l—p1
m 3
x, s dx

—Truzx Poy (57)
0

Using equation (31), equation (40) becomes

_1
zP 0,z;s 1+ Aa Cz —1sQ(s)
60 yxC xyz sdx+

o 1
O”i/sz'2 xz,sdx+pz+1—pl—

muxP xzsd
r /,an X, Z, S dx. (58)

0

Performing similar operation on equations (48),
(49), (50) and (51) we get,

m
P2 0,Z,S=[1XP1 X,z s (59)

0

_3 m 2

P 0,z,s=u;xP X, Z, s dx (60)

0

_1

cC 0,zs
m 3

=r(l—p+pz)usxP X, 2,5 dx (61)
0

_2

Cc 0,zs

m 1
=0y.xC x,z,S dx (62)
0
Integrating equation (52) between 0 to x, we get
_1 _1
P 0,zs =P x2zs
—s+la 1-C z x— xu t dt
e ol 63

Where P1(0, z, s) is given by equation (58).

Again integrating equation (63) by parts with
respect to x yields,
-1

P 2zs _
(1-B1)
Kl s+Aal—-Cz
=P 0,zs (64)
s+Alal—-Cz
Where
Bis+ial—-Cz
m
— e—s+la 1—szdB1 (x) (65)

0

is the Laplace-Stieltjes transform of the first stage
service time By (x) Now multiplying both sides of
equation (63) by K €3]

and integrating over x we obtain

m_1 1

P O,Z,de=15 O,z,sél
0

[s+da1-C z ] (66)

Similarly, on integrating equations (53) to (56) from
0 tox, we get

_2 2

P x,zs =P 0,zs

—s+Aa1—sz—xutdt

e 02 (67)
P’ x,z,s=P % 0,z se-stial-Czx—"pzpdt
(68)
_1
C x2S .

_ 1 —s+AB1-Czx—"ytdt
=C 0,zse 0l (69)
€°%x 2s
:EZ 0,25 e—s+w1—sz—xyzt0dt (70)

_2 _3 _1

szlere P x,zs,P x,2zs,. x 25, and
C xzs are given by equations (59) to (62).

Again integrating equations

(67) to (70) by parts with respect to x yields,
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P zs
(1-By)
2 s+ia 1-C z
=p 0,2, s
st+Adal—-Cz
_3
P zs
(1-B3)
3 s+Aal—-Cz
=P O,Z,S
st+Adal—-Cz
_1
C 2zs _
1-Cy
1 s+Af1—-Cz
=c  Ozs STAFT—Cz
_2
C zs
1-Cy)
s+Af1—-Cz
=c? 07z p
s+AB 1-C z
Where

Ezs+/1a1—Cz

m
= e~ Sstlal-Czx dBZ (x)
0

§35+/1a1—CZ

m
=e~ s+Aa1-Czx dB3 (x)
0

(7D

(72)

(73)

(74)

(75)

(76)

is the Laplace-Stieltjes transform of the second and

third stage service

time B,(x)

and B ()

respectively. Now multiplying both sides of equation
(68) by uz x and (69) by u3 x and integrating

over x we obtain

my

P x,z,su;x
0 _ 2 _
=P 0,z,sB;s
+Aa1-C z

m

_3 _3 —
P x,zsu x =P 0,zs B, S

0
+Aa1-C z

and

77

(78)

Ci(s+AB1-Cz
m

j e~ stAp l—szdclx (79)

C,(s+AB1—Cz

m
e~ s+AB1-Czx dCZ x (80)
0
is the Laplace-Stieltjes transform of the vacation
time C 1(x) and C 2(x)) Now multiplying both sides
of equation (70) by y 1(x)
and (71) by y 2(x) and integrating over x we obtain

m
—1

C x,zsyx
0
_1 _
=C 0,z,s C:s
+A81-C z (81)
m
_2 2 _
C x,z,syx2=C 0,z,sC , S
0
+A81-C z (82)

Using equation (66), equation (59) reduces to

_2 _1 _
P 0,z,s =P 0,zsB{ R (83)

Now using equations (77) and (68) in (60), we get

3
P 0,zs
P 0,z,s By RB, R (84)
By using equations (78) and (83) in (61), we get
c ' 0,zs
=r(+pz)B1 RB; RB; RP "0,zs (85)

Using equations (81) and (85), we can

write equation (62) as

2

C 0,zs

=0rl-p

—pzBRB -, R 33 R €1 TR 10,2zs(86)
1

Now using equations (78), (79) and (82), equation
(58) becomes

ZP10,z,s=1+AaCz—1-S5]Qs+I—
_ _ 1

6Cc,TC 0,zs

- 2

+C, T C 0,zs

+pz+1—p31

-r }5’3 RP 0,z,s (87)

Similarly using equations (84), (85) and (86),
equation (87) reduces to
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1

P 0,2zs

1+AaCz—1—-5sQ(s)

_ Q(s) (88)
DR

Where

DR=z—1—p+pzB RB,RBsR

1—747C; T 1-60+46C, T (89)

R=s+Aal—-CZ)andT=s5s+A1—-C(2).
Substituting the equations (83), (84), (85) and (88)
into equations (64), (71), (72), (73) and (74) we get

1

P zs

_ (1-s5Q(s)+1aCz—1Qs[1—B1R]
DR R

PZZ,S

B RQA-s00)) 1-8

=+AaCz—1OS R (91)
DR R
_3
P zs
(BiRB2R (1 —5Q(s))
_ +laCz-1Qs 1—B3R
- DR R
_1
C zs
(r1-p+pz)
BiRB,RBsR —
== 2DR3 Hd—s0s)

— [1-TiT]
+AaCz—-1Qs — 7 (93)
_2
C zs

9T1—p+l_)ZB1R_BzR§3R61_T (1

_ DR
—sQs

Qs) _ [1—€1T]
+Aa C z —1Q s (94)
where DR is given by equation (89). Thus
_1 2 3 _1
P zs,P zs,P z,s,C z5s and

—2
C z, s are completely determined from equations

(90) to (94) which completes the proof of the
theorem

6. THE STEADY STATE RESULTS

In this section, we shall derive the steady
state probability distribution for our queueing
model. To define the steady probabilities we
suppress the argument t wherever it appears in the

time-dependent analysis. This can be obtained by
applying the well-known Tauberian property,

limsfF s =lim f(t) (95)
s—-m t-m
In order to determine
—1 — 2 — 3 —1
ThusP zs,P 2zs,P 2zs,C 2zs and
2

C z, s completely, we have yet to determine the
unknown Q which appears in the numerators of the
right hand sides of equations (90) to (94). For that
purpose, we shall use the normalizing condition

P114+P214P31+CH1+CP1+Q

=1 (96)
5.2. Theorem
The steady state probabilities for
anMX /G/1 feedback (OqOu)euewith three stage
heterogeneous service, feedback, Bernoulli vacation
and optional server vacation with restricted
admissibility are given by
AaE 1 E B Q
POl = — 97)
dr
AaE1E B, Q
pP@1 = —g (98)
p® 1 = AaE 1 B2; Q (99)
dr
AdarE1EC1Q
CWl1= ——Qa— (100)
D 1= Aar6@E 1 E C,Q Lo1
- dr (101)
where
dr=1—-p—AE1I
aE Bl +E Bz E Bg
+rBE C (102)

AndEC=EC;+0EC,.

PO 1,p@ 1,Pp® 1,¢M 1¢® 1and Qare the
steady state probabilities that the server is providing
first stage of service, second stage of service, third
stage of service, server under phase one and server
under phase two vacation, server under idle
respectively without regard to the number of
customers in the system.

Proof: Multiplying both sides of equations (90) to
(94) by s, taking limit as s = 0, applying property
(95) and simplifying, we obtain
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Plz
AaCz—-1)
1-BfzQ
= 11 (103)
fi1zDz

P2z _
(AaCZ—le%%
1-B2f12zQ

X (104)

P3z
_(Aa C z.—-1)
Bi fiz B fiz
1—§3f1ZQ

- fi1zDz (105)

Clz

(Aar Cz-1
Bz1- C17E3ZQ

= 717Dz (106)

C2z
Aar@
1-p+p2)
C z -1
_ Ml_fQZ_
f3zD z

1—_62 f3Z Q

(107)

Where
Dz=z—-1-p
+pZB1f1ZBzf1ZB3le
1—r+71Cif2z1—0+06C;f2z,
§z=Bl_flzBl f1_ZBgf1Z._f12
=Alal—-Cz,
andf,z=A1—-Cz.

Let W,(z) denote the probability generating function

of the queue size irrespective of the state of the
system. Then adding equations (103) to (107) we
obtain

Wez=PDz+P@Dz+POz+(Dz

+C@z
AaCz—1
1—Bif1
Wz= 1f12Q
a f1zD z

AaCz—lElflz

1-B;f12Q
fi1zDz

laCz—1B;
f1z ‘B, fiz

1-B3

fi1z ¢

fi1zDz
1-p+pz) _
Ccz—187%
1-Cif22Q
f2zDz

l1-p+pz) _  _

Aare(cz_lelezz

+ 1—[Ezf,2_\ZQ
Tz DU Z
2

+

Alar

(108)

We see that for z =1, W, 1 is indeterminate of the
form 5 Therefore, we apply L'Hopital’s rule and on
simplifying we obtain the result (109), where
C1=1,C 1=EIis mean batch size of the

arriving customers, —=B°0 = E B;, —C' 0
i j

=EC;,i=123,..andj=12, ..

w,1
. EB,+EB,EB;
AaC (1)
+rE C
- 1
- (109)

wheredr is given by equation (102). Therefore
adding Q to equation (109)equating to 1 and
simplifying, we get
Q=1-p

and hence the utilization factor p of the system is
given by

(110)

EB+EBEB
1 2
aAE | +7E C

P=di—p—12ET f— a E(0)]

3
(111)

wherep < 1 is the stability condition under which
the steady state exists. Equation (110) gives the
probability that the server is idle. Substituting Q
from (110) into (108), we have completely and
explicitly determined W, z ,the probability
generating function of the queue size.

7. THE MEAN QUEUE SIZE AND THE MEAN
SYSTEM SIZE

Let L, denote the mean number of customers in the
queue under the steady state. Then
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d

L= quz atz=1

Since this formula gives 0/0 f,@rzm, then we write

W z givenin(93)asW z =~ where N z and
q q Dz

D z are numerator and denominator of the right
hand side of (93) respectively. Then we use
.o d
b= lim g
(D1 N"1)
—lim1-N D'
z—»lﬂ Z(D’ 1 )2

W z

(112)

where primes and double primes in (112) denote
first and second derivative at z = 1, respectively.
Carrying out the derivative at z = 1 we have

N'1
=AaBEIEB1+EB,+EBs
+7E C 113
" 2 2
N ABaElaEBi+EB ’ 4—5‘32
1= a a
s +[£1EC€+%9ECZ)Z 3
+AaBETI—1 ,
EB +EB +EB +rEC 2
1 2 3 +2).‘BCIEI
aEB1((EBz+EB3)+(ZEBzEB3
+ﬁT29E€1ECZ
+2ABarEIEC”
XEB+EB+EB s
+ 2ArafpE 1 E C 114
D'1=
EB, +EB
1—p— g1 @EBL +EB) (115)
+E B3+ 1BEC
D'1
=A2PEI+EII—1a(EB;
+EB,+EBs
+rBEC
—22Bar E1 EC EBiyg g 2 3
—2El
x a2(E B? ¢+ E B? +,E B? + B2rE C2 + O 2 5
Y
X E By (E By+ E B3+ aE By E By
+B2r6E C E C, (116)

whereE C? , are the second moment of the vacation
time, E I I — 1 is the second factorial moment of
the batch size of arriving customers. Then if we
substitute thevaluesN'1,N"1,D'1,D"1 from

equations (113) to (101) into equations (112) we
obtain Lq in the closed form.

Further, we find the mean system size L using Little’s

formula. Thus we have
L=Ls+p 117

whereL, has been found by equation (112) and p is
obtained from equation (111).

8. PARTICULAR CASE

Case 1: No feedback, no optional vacation and no
restricted admissibility.

Putp =0,0 =0, and a = # = 1in the main results,
we get

Q=1-p 118
p=AEIEB;+EB;+EB3
+71E Cq (119)
N1
=AEIEB+EBy+EB;3
+71E Cq (120)
Nz1 2 2+ EB?
=AEI EBl 2
+71EC3y
+AEII—1EB{+EB;+E B3
+TEC1 22 +EB)
+20E1I E B, (E B, 3
+EB.EBs EB+EB
+2Ar EI EC 1 2
+ E B3 (121)
D'1
=—-AEIEB,+EB,+EB;3
+7rE C (122)
D"1

= AEII—1EB,+EBy+ EBs+7EC
A S PR B s gt ¢
~9rEl B¢

YW EB?yEB Y rEC?]

- /} El ° 2E B 2 3 1
—2AEIEB{EB,+E B3
+E B EB 123
2 3
Then, if we substitute the values

N 1,N" 1,D 1,D" 1 from equations (120)to
(123) into equations (112), we obtain Lq in the
closed form.

Case 2: The service and vacation times are
exponential.

Putp =0,60 =0, a = =1 in the main results. The
most commondistribution for the service and
vacation times are the exponential distribution.
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For this distribution, the exponential service
ratey; > 0 and the exponential vacationrate

y;j>0,fori=0,1,2,3,..andj =0,1, 2, ... then we
have

0=1-p 124
p= AE1 (u3y1 b2 +p1) 125
U113V 1 +ua po(y1 + T13)
N'1=2E I pzyip2 +
+ s Y1+ s 126

N

2 2 2 2 + 212 2
—2AElpyptg, o o THIEW,
+7v%)

+AE I I =1 pypopsys pays po +p1 + paipz (v

2

trus) —22E Tppsys i+

+ 2 rpapopsy1 E 1 pa(u1 + p2)

+ U2 127

D'1

= U123y

_AE | %H3)’1 Hz +H1y ) (128)
+ugpz(y1+ ru3)

D"1

=—AE 1 — 1y uipauz 3y fo + ta

+ a2 Y1t T3

- 2/1271/1#15122;@ ETpops+ Bilfsithita e | 2

—21E1#23V1#2+M1 12 1 3

=2 EIVuympstl |

+ us (129)

Then, if we substitute the values

N'1,N"1,D'1,D"1 from equations (126) to
(129) into equations (97), we obtain L, in the closed
form.

9. CONCLUSION

In this paper we have studied a batch arrival, three
stage heterogeneous service, feedback with
Bernoulli vacation and optional server vacation. This
paper clearly analyzes the transient solution, steady
state results. If the customer is not satisfied with the
service, again he can join the tail of the queue and get
the regular service.
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