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ABSTRACT 

We consider a batch arrival queueing system with three stage heterogeneous service provided by a 
single server with different (arbitrary) service time distributions. Each customer undergoes three stages of 
heterogeneous service. As soon as the completion of third stage of service, if the customer is dissatisfied with 
his service, he can immediately join the tail of the original queue. The vacation period has two heterogeneous 
phases. After service completion of a customer the server may take a phase one Bernoulli vacation. Further, 
after completion of phase one Bernoulli vacation the server may take phase two optional vacation. The 
vacation times are assumed to be general. In addition we assume restricted admissibility of arriving batches 
in which not all batches are allowed to join the system at all times. The time dependent probability generating 
functions have been obtained in terms of their Laplace transforms and the corresponding steady state results 
have been obtained explicitly. Also the mean number of customers in the queue and the system are also 
derived. Some particular cases and numerical results are discussed. 

 
Keywords: Heterogeneous Service, Multiple Adaptive Vacation, Closed Down Times. 

 

1. INTRODUCTION 

During the last three or four decades, queueing 
models with vacations had been the subject of 
interest to queueing theorists of deep study because 
of their applicability and theoretical structures in 
real life situations such as manufacturing and 
production systems, computer and communication 
systems, service and distribution systems, etc. The  
M X /G/1 queue has been studied by numerous 
authors including Scholl and Kleinrock 1983, Gross 
and Harris, 1985, Doshi 1986, Kashyap and 
Chaudhry 1988, Shanthikumar 1988, Choi and Park 
1990 and Madan 2000, 2005. Krishnakumar et al., 
2002 considered an M/G/1 retrial queue with 
additional phase of service. Madan and Anabosi 
2003, have studied a single server queue with 
optional server vacations based on Bernoulli 
schedules and a single vacation policy. Madan and 
Choudhury 2005, have studied a single server queue 
with two phase of heterogeneous service under 
Bernoulli schedule and a general vacation time. 
Thangaraj and Vanitha 2010 have studied a single 
server M X /G/1 feedback queue with two types of 
service having general distribution. Levy and 
Yechiali 1976, Baba 1986, Keilson and Servi 1986, 
C.Gross and C.M. Harris 1985, Takagi 1992, 
Borthakur and Chaudhury 1997, Cramer 1989, and 
many others have studied vacation queues with 
different vacation policies. In some queueing 
systems with batch arrival there is a restriction such 
that not all batches are allowed to join the system at 
all time. This policy is named restricted admissibility. 

Madan and Choudhury 2005 proposed anqueueing 
system with restricted admissibilty of arriving 
batches and Bernoulli schedule server vacation. In 
this paper, we consider a batch arrival queueing 
system with three stage heterogeneous service 
provided by a single server with different (arbitrary) 
service time distributions. Each customer undergoes 
three stage heterogeneous service. As soon as the 
completion of third stage of service, if the customer 
is dissatisfied with his service, he can immediately 
join the tail of the original queue as a feedback 
customer with probability p to repeat the service 
until it is successful or may depart the system with 
probability 1 − p if service happens to be successful. 
The vacation period has two heterogeneous phases. 
Further, after service completion of a customer the 
server may take phase one vacation with probability 
r or return back to the system with probability 1 − r 
for the next service. After the completion of phase 
one vacation the servermay take phase two optional 
vacation with probability θ or return back to the 
system with probability1 − θ. In addition we assume 
restricted admissibility of arriving batches in which 
not all batches are allowed to join the system at all 
times. This paper is organized as follows. 2. 
Supplementary variable technique. The 
mathematical description of our model is given in 
section 3. Definitions and Equations governing the 
system are given in section 4. The time dependent 
solution have been obtained in section 5. and 
corresponding steady state results have been 
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derived explicitly in section 6. Mean queue size and 
mean system size are computed in section 

7. Some particular cases are given in section 

8. Conclusion are given in section 9 respectively. 

So if 𝑆 (𝜃) is the LST of the service time, the steady 
state queue size equations are given by 

𝜃𝑃 10  𝜃  − 𝑃10  0  = 𝜆𝑃 10  𝜃  − 𝑃11  0 𝑆  𝜃  − 
𝑃00 (0)𝜆𝑆  (𝜃) (7) 
𝜃𝑃 1𝑗  𝜃  − 𝑃1𝑗  0  = 𝜆𝑃 10  𝜃  − 𝑃1𝑗 +1  0 𝑆  𝜃  − 

2. SUPPLEMENTARY VARIABLE TECHNIQUE 𝑃00  0 𝜆𝑆 𝜃 + 𝑗 𝑃 1,𝑗 −𝑘 (𝑥)𝜆𝑔𝑘 (8) 

2.1. PGF of MX/G/1 Model without Vacations or 
Closed-down time Jobs 

to apply the technique of Lee, H. S. [6], we define the 
following PGFs 

2.2. Description of the Model and Basic Equations 

Let 
𝑃 𝑖   𝑧, 𝜃   =    𝑚 
 𝑚    𝑃1𝑗     0 𝑧𝑗 

𝑃 𝑖𝑗  𝜃 𝑧𝑗 , 𝑃𝑖 𝑧, 0 = 
(9) 

𝑃 𝑥, 𝑡 = 𝑃{𝑁 𝑡 = 1, 𝑁 𝑡 = 𝑗, 𝑥 ≤ 𝑆0 𝑡  𝑗 =0 

1𝑗 𝑠 𝑞 

≤ 𝑥 + 𝑑𝑡, 𝑌 𝑡 = 0, 𝑗 ≥ 0} Multiply Eq. (7) by 𝑧0 and Eq. (8) by 𝑧𝑗 (𝑗 ≥ 1) and 
take the summation from 𝑗 = 0 𝑡𝑜𝑚, we have 

The basic steady state equations are 

𝑃00 𝑥 − ∆𝑡, 𝑡 + ∆𝑡 = 𝑃00 𝑥, 𝑡 1 − 𝜆∆𝑡  

𝑚 𝑚 

𝜃 𝑃 1𝑗 𝜃 𝑧𝑗 − 𝑃1𝑗 0 𝑧𝑗 

+𝑃10     0, 𝑡 ∆𝑡 (1) 𝑗 =0 𝑗 =0 
𝑚 

 
𝑃10 𝑥 − ∆𝑡, 𝑡 + ∆𝑡 = 𝑃10 𝑥, 𝑡 1 − 𝜆∆𝑡  

+𝑃11    0, 𝑡 𝑠 𝑥 ∆𝑡 + 𝑃00    0, 𝑡 𝜆𝑠   𝑥 ∆𝑡 (2) 

𝑃1𝑗 𝑥 − ∆𝑡, 𝑡 + ∆𝑡  
= 𝑃1𝑗 𝑥, 𝑡 1 − 𝜆∆𝑡  

= 𝜆 𝑃 1𝑗 𝜃 𝑧𝑗 
𝑗 =0 

𝑚 

− 𝑧−1  𝑃 1𝑗 +1 0 𝑧𝑗 +1 𝑆 𝜃  
𝑗 =0 

𝑚 𝑗 

+ 𝑃1𝑗 +1 

𝑗 

+ 𝑃 

 0, 𝑡 𝑠 𝑥 ∆𝑡 

 
 𝑥, 𝑡 𝜆𝑔 ∆𝑡 
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− 𝑃 1𝑗 +1 𝜃 𝑧𝑗 −𝑘 𝑧𝑘 𝜆𝑔𝑘 

𝑗 =1 𝑘=1 

− 𝜆𝑆 𝜃 𝑃00 0 𝑧0. 
 

𝑘=1 

1𝑗 −𝑘 𝑘 

Using the LST in (9), we have 

2.3. Queue Size Distribution 𝜃𝑃 1 𝑧, 𝜃  − 𝑃1  𝑧, 0  = 𝜆𝑃 1 𝑧, 𝜃  − 𝑧−1 𝑃1  𝑧, 0  − 
Move the first coefficients 𝑃𝑖𝑗 (𝑥, 𝑡)of (1) – (3) to the 𝑃10 0 𝑆 𝜃 − 𝜆 𝑚 𝑧𝑘 𝑔𝑘 𝑃 1 𝑧, 𝜃 − 𝜆𝑆 𝜃 𝑃00 0  

left side and take the limit as ∆𝑡 → 0, we get (10) 
′ where𝑃10 = 𝜆𝑃00 since 𝑃′ 𝑥 = 0 in (4) 

𝑃00 𝑥 = −𝜆𝑃00    𝑥   + 𝑃10    0 (4) 00 

and 
𝑃′    𝑥   = −𝜆𝑃  𝑥 + 𝑃  0 𝑠 𝑥 + 𝑃 𝑚 𝑚  0 𝜆𝑠 𝑥  

10 

(5) 
10 11 00 

  𝑔𝑘 𝑧𝑘 = 𝑃 𝑋 = 𝑘 𝑧𝑘 = 𝐺 𝑧 . 

𝑃′ 𝑥 = 

−𝜆𝑃1𝑗    𝑥   + 𝑃1𝑗 +1  0 𝑠 𝑥 + 

𝑘=1 

Hence 

𝑘=1 

𝑗 
𝑘=1 𝑃1𝑗 −𝑘 (𝑥)𝜆𝑔𝑘 (6)  𝜃 − 𝜆 + 𝜆𝐺 𝑧 𝑃 1 𝑧, 𝜃 = 1 − 𝑧−1 𝑆 𝜃 𝑃1 𝑧, 0 + 

The Laplace Stieltje’s Transform of 𝑃𝑖𝑗 (𝑥) is defined 

as 

𝑚 

𝜆𝑆           𝜃   𝑧−1 − 1  𝑃00    0 (11) 

Put 𝜃 = 𝜆 − 𝜆𝐺(𝑧) in (11), we have 

𝑃 𝑖𝑗  𝜃   =     𝑒−𝜃𝑥 𝑃𝑖𝑗 

0 

 𝑥 𝑑𝑥 
𝑧 − 𝑆 𝜆 − 𝜆𝐺(𝑧)  

𝑧 
𝑃1 𝑧, 0  

 

 
𝑧 − 1 

Therefore the Laplace Stieltje’s Transform of 𝑃′ (𝑥) = 𝜆𝑆 −𝜆𝐺 𝑧       𝑃00 (0) 

is given by 
𝑚 

𝑖𝑗 
 
 

𝑚 

𝑧 

𝑃1 𝑧, 0  
−𝜃𝑥 ′     

−𝜃𝑥 
 

−𝜃𝑥 𝜆𝑆 𝜆 − 𝜆𝐺 𝑧 𝑧 − 1 𝑃00 0  = 
 

 

(12) 
  𝑒 
0 

𝑃𝑖𝑗 𝑥  𝑑𝑥 = 𝑒 𝑃𝑖𝑗 𝑥 − (−𝜃)𝑒 
0 

𝑃𝑖𝑗 𝑥 𝑑𝑥 
𝑧 − 𝑆 𝜆 − 𝜆𝐺 𝑧   

= 𝜃𝑃 𝑖𝑗  𝜃  − 𝑃𝑖𝑗 (0) By substituting (12) in (11), we obtain 
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−   

 𝜃 − 𝜆 + 𝜆𝐺 𝑧 𝑃 1 𝑧, 𝜃  
 𝑆 𝜃 − 𝑧  

Let λ∁𝑖 𝑑𝑡(𝑖 ≥ 1) be the first order probability 
that a batch of i customers arrives at the system 

1 − 𝑧   𝑆 𝜆 − 𝜆𝐺 𝑧    + 𝑆 𝜃   𝑃 0  
during a short interval of time 
(t,t + 𝑑𝑡], where 0 ≤ ∁𝑖≤ 1 and 𝑚 ∁𝑖 =1 and λ 

= 𝜆 00 𝑧 𝑖=0 

 
 

1 − 𝑧 
= 𝜆       

𝑧 

𝑧 − 𝑆 𝜆 − 𝜆𝐺 𝑧    
 
 

𝑧 𝑆 𝜃 − 𝑆 𝜆 − 𝜆𝐺 𝑧    

𝑧 − 𝑆 𝜆 − 𝜆𝐺 𝑧 
𝑃00 0 

 

> 0 is the arrival rate of batches. 
b) (b)A single server provides three stages of 

service for each customer, with the service times 
having general distribution. Let Bi(v) and bi(v) (I 
=1, 2, 3) be the distribution and the density 
function of i stage service respectively. 

 
𝑃 1 𝑧, 𝜃 = 

𝜆 1 − 𝑧 𝑆 𝜃 − 𝑆 𝜆 − 𝜆𝐺 𝑧    
 

 

 𝜃 − 𝜆 + 𝜆𝐺 𝑧 𝑧 − 𝑆 𝜆 − 𝜆𝐺 𝑧    

c) The service time follows a general (arbitrary) 
distribution with distribution function 𝐵𝑖 𝑠 and 
density function 𝑏𝑖 𝑠 . Let 𝜇𝑖 𝑥 𝑑𝑥 be the 
conditional probability density of service 

𝑃00    0 (13) completion during the interval (𝑥, 𝑥 + 𝑑𝑥], given 
that the elapsed time is 𝑥, so that 

 
Let 𝑃 𝑧 be the PGF of the queue size at an arbitrary 
time epoch. Then 𝑃 𝑧 is the sum of the PGFs of 

𝜇   𝑥  = 
𝑏𝑖 𝑥 

 
𝑖 1 − 𝐵𝑖 𝑥  

 
, 𝑖 = 1,2,3, … 

queue size at server completion epoch and idle time 
epoch. So 

𝑃  𝑧   = 𝑃 1  𝑧, 0   + 𝑃00    0 (14) 

and therefore, 
m 

𝑏𝑖    𝑠   = 𝜇𝑖   𝑠  e   0 

 
 
μi  𝑥  𝑑𝑥 

 
 

, 𝑖 = 1,2,3, . .. 

By substituting 𝜃 = 0 in the equation (13), the 
equation (14) becomes 

𝜆  1 − 𝑧  

  1 − 𝑆 𝜆 − 𝜆𝐺 𝑧    
𝑃 𝑧  = + 1 𝑃00 0  

 −𝜆 + 𝜆𝐺 𝑧   

d) Moreover, after the completion of third stage 
of service, if the customer is dissatisfied with 
his service, he can immediately join the tail of 
the original queue as a feedback customer for 
receiving another service with probability . 
Otherwise the customer may depart forever 
from the system with probability 1 − 𝑝 . 

  𝑧 − 𝑆 𝜆 − 𝜆𝐺 𝑧    
Further, we do not distinguish the new arrival 
with feedback. 

 1 − 𝑧 1 − 𝑆 𝜆 − 𝜆𝐺 𝑧 − 1 − 𝐺 𝑧   

 𝑧 − 𝑆 𝜆 − 𝜆𝐺 𝑧    
= 𝑃00 0  

e) As soon as the third stage of service is 
completed, the server may take phase one 
Bernoulli vacation with probability 𝑟 or may 
continue staying in the system with 

 

𝑃 𝑧  

𝐺 𝑧 − 1 𝑧 − 𝑆 𝜆 − 𝜆𝐺 𝑧     
probability 1 − 𝑟. After completion of phase 
one vacation the server may take phase two 

1 − 𝑧 1 − 𝑍 − 𝑆 𝜆 − 𝜆𝐺 𝑧 − 1 − 𝐺 𝑧   

 𝑧 − 𝑆 𝜆 − 𝜆𝐺 𝑧    
= 

 𝐺 𝑧 − 1 𝑧 − 𝑆 𝜆 − 𝜆𝐺 𝑧    

which represents the PGF of number of customers in 
queue in an arbitrary time epoch. 

3. MATHEMATICAL DESCRIPTION OF THE MODEL 

We assume the following to describe the 
equueing model of our study. 

a) Customers arrive at the system in batches of 
variable size in a compound Poisson process and 
they are provided one by one service on a first 
come - first served basis. 

optional vacation with probability 𝜃 or return 
back to the system with probability 1 − 𝜃 On 
returning from vacation the server starts 
instantly serving the customer a1t5t he head of 
the queue, if any. 

f) The server’s vacation time follows a general 
(arbitrary) distribution with distribution 
function 𝑐𝑖 𝑡 and density function 𝑐𝑖 𝑡 . Let 
𝛾𝑖    𝑥  𝑑𝑥   be  the  conditional  probability  of   a 
completion  of  a  vacation  during  the interval 
(𝑥, 𝑥 + 𝑑𝑥] given that the elapsed vacation 
time is 𝑥, so that 

𝛾 𝑥 =
 𝑐𝑖 𝑥 

, 𝑖 = 1,2, … and therefore 
𝑖 1−𝑐𝑖 𝑥  

t 

𝑣𝑖 𝑡 = 𝛾𝑖 𝑡 e− 0 𝛾𝑖 𝑥 𝑑𝑥 , 𝑖 = 1,2, …. 

g) The restricted admissibility of batches in 
which not all batches are allowed to join the 
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0 

𝑛−𝑘 

0 

𝑛 

0 

𝑐 𝑐 1 𝑛 

𝑛 

𝑛 𝑛 

𝑛−𝑘 𝑘 

system at all times. Let 𝛼 0 ≤ 𝛼 ≤ 1 and 
𝛽 0 ≤ 𝛽 ≤ 1 be the probability  that  an 
arriving batch will be allowed to join the 
system during the period of server’s non- 
vacation period and vacation period 
respectively. 

h) Various stochastic processes involved in the 
system are assumed to be independent of each 
other. 

4. DEFINITIONS AND EQUATIONS GOVERNING 

probability that at time t there are 𝑛 customers  in 
the queue and the server is under phase two 
vacation irrespective of the value of 𝑥. 

Q(t) = Probability that at time t, there are no 
customers in the queue and the server is idle but 
available in the system. The model is then, governed 
by the following set of 

differential-difference equations: 
𝜕 

𝑃 1 𝑥, 𝑡 + 
𝜕 

𝑃 1 𝑥, 𝑡 + 𝜆 + 𝜇 𝑥 𝑃 1 𝑥, 𝑡 = 
  

THE SYSTEM 𝜕𝑥 0 𝜕𝑡    0 1 0 

𝜆  1 − 𝛼  𝑃 1  𝑥, 𝑡 (16) 
We define𝑃 1 𝑥, 𝑡 = Probability that at time 

𝑛 𝜕  1  
𝜕 1  

 
 

 1  

t, the server is active providing first stage of service 𝜕𝑥 
𝑃𝑛

  𝑥, 𝑡 + 𝜕𝑡 
𝑃𝑛

  𝑥, 𝑡 + 𝜆 + 𝜇1 𝑥 𝑃𝑛  𝑥, 𝑡  
and there are 𝑛 ( 𝑛 ≥ 0 ) customers in the queue = 𝜆 1 − 𝛼 𝑃 1 𝑥, 𝑡  
excluding the one being served and the elapsed 
service  time  for  this  customer  is   𝑥.  Consequently 
𝑃

 1  
  𝑡   =     

𝑚  
𝑃

 1  
  𝑥, 𝑡   𝑑𝑥    denotes   the probability 

 

𝑛 

+          𝜆𝛼 𝑐𝑘 

𝑛 

 

𝑃 1 𝑥, 𝑡 , 
𝑛 0 𝑛 𝑘=1 

that at time t there are 𝑛 customers in the queue 
excluding one customer in the first stage of service 
irrespective of the value of 𝑥. 

𝑛 ≥ 1 17  
𝜕 

𝑃 2 𝑥, 𝑡 + 
𝜕 

𝑃 2 𝑥, 𝑡 + 𝜆 + 𝜇 𝑥 𝑃 2 𝑥, 𝑡 = 
  

𝜕𝑥 0 𝜕𝑡    0 2 0 

 2  
𝑛  𝑥, 𝑡 = Probability that at time t, the server is 𝜆  1 − 𝛼  𝑃 2  𝑥, 𝑡 (18) 

active providing second stage of service and there 
𝜕 

𝑃 2 𝑥, 𝑡 + 
𝜕 

𝑃 2 𝑥, 𝑡 + 𝜆 + 𝜇 𝑥 𝑃 2 𝑥, 𝑡  
 

  

are 𝑛 ( 𝑛 ≥ 0 ) customers in the queue excluding the 𝜕𝑥 𝑛 𝜕𝑡 𝑛 2 𝑛 

one being served and the elapsed service time for = 𝜆 1 − 𝛼 𝑃 2 𝑥, 𝑡  
this customer is 𝑥. 

 2  

 
 𝑚 2  

𝑛 

+ 𝜆𝛼 𝑐 
 
𝑃 2 𝑥, 𝑡 , 

Consequently 𝑃𝑛 𝑡 = 0 𝑃𝑛 𝑥, 𝑡 𝑑𝑥 denotes the 
𝑘 𝑛−𝑘 

𝑘=1 

probability that at time t there are 𝑛 customers  in 
the queue excluding one customer in the second 
stage of service irrespective of the value of𝑥. 

𝑛 ≥ 1 (19) 
𝜕 

𝑃 3 𝑥, 𝑡 + 
𝜕 

𝑃 3 𝑥, 𝑡 + 𝜆 + 𝜇 𝑥 𝑃 3 𝑥, 𝑡 = 
  

𝑃 3 𝑥, 𝑡 = Probability that at time t, the server is 𝜕𝑥 0  
 3  𝜕𝑡    0 3 0 

𝑛 

active providing third stage of service and there are 
𝑛 ( 𝑛 ≥ 0 )customers  in the queue excluding the  one 

𝜆  1 − 𝛼  𝑃0                     𝑥, 𝑡 (20) 
𝜕 

𝑃 3 𝑥, 𝑡 + 
𝜕 

𝑃 3 𝑥, 𝑡 + 𝜆 + 𝜇 𝑥 𝑃 3 𝑥, 𝑡  
  

being served and the elapsed service time for this 𝜕𝑥 𝑛 𝜕𝑡 𝑛 3 𝑛 

customer is𝑥. 

Consequently 𝑃
 3

 𝑡 = 
𝑚 

𝑃
 3

 𝑥, 𝑡 𝑑𝑥 denotes the 

= 𝜆 1 − 𝛼 𝑃 3 𝑥, 𝑡  
𝑛 

+ 𝜆𝛼 𝑐 𝑃 3 𝑥, 𝑡 , 
𝑛 0 𝑛 𝑘    𝑛−𝑘 

probability that at time t there are 𝑛 customers  in 
the queue excluding one customer in the third stage 
of service irrespective of the value of𝑥. 

𝑘=1 

𝑛 ≥ 1 21  
𝜕 

𝑐 1 𝑥, 𝑡 + 
𝜕 

𝑐 1 𝑥, 𝑡 + 𝜆 + 𝛾 (𝑥) 𝑐 1 𝑥, 𝑡 = 
  

𝑐 1 𝑥, 𝑡 = Probability that at time t, the server is 𝜕𝑥 0 𝜕𝑡    0 1 0 
𝑛 

under phase one vacation with elapsed vacation time 𝜆 1 − 𝛽 𝑐 1 𝑥, 𝑡  

𝑥  and  there  are  𝑛 𝑛 ≥ 0    customers  in  the  queue. 
Consequently   𝑐

 1  
  𝑡   =     

𝑚  
𝑐

 1  
  𝑥, 𝑡  𝑑𝑥  denotes the 

𝜕 1  
𝑛 

 
 𝑥, 𝑡 + 

𝜕 1  
𝑛  𝑥, 𝑡 + 𝜆 + 𝛾 𝑥 𝑐 1  

 
 𝑥, 𝑡  

𝑛 0 𝑛 𝜕𝑥 𝜕𝑡 
probability that at time t there are 𝑛 customers  in 
the queue and the server is under phase  one 
vacation irrespective of the value of 𝑥. 

=   𝜆  1 − 𝛽  𝑐  1  𝑥, 𝑡 (22) 
𝜕 

𝑐 1 𝑥, 𝑡 + 
𝜕 

𝑐 1 𝑥, 𝑡 + 𝜆 + 𝛾 𝑥 𝑐 1 𝑥, 𝑡  
  

𝜕𝑥 𝑛 𝜕𝑡 𝑛 1 𝑛 

𝑐  2 𝑥, 𝑡 = Probability that at time t, the server is 
under phase two vacation with elapsed vacation time 
𝑥  and  there  are  𝑛 𝑛 ≥ 0    customers  in  the  queue. 
Consequently  𝑐

 2  
  𝑡   =     

𝑚  
𝑐

 2  
  𝑥, 𝑡   𝑑𝑥  denotes the 

= 𝜆 1 − 𝛽 𝑐 1 𝑥, 𝑡  
𝑛 

+ 𝜆𝛽 𝑐 𝐶 1 𝑥, 𝑡  
𝑘=1 

𝑛 0 𝑛 

𝑃 

𝑛 
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𝑛 

0 

𝑛 

𝑛−𝑘 

1 0 

𝑛 

𝑛 3 𝑛 

3 𝑛−1 

𝑛 1 𝑛 

, 𝑛 ≥ 1 (23) 
𝜕   

𝑐  2   𝑥, 𝑡  +    
𝜕  

𝑐  2   𝑥, 𝑡    𝜆 +  𝛾    𝑥   𝑐  2   𝑥, 𝑡 = 
  

= 1 𝑎𝑛𝑑 𝑃𝑖 0 = 0, 𝑓𝑜𝑟 𝑛 = 0, 1, 2, … ., 

𝑖 = 1, 2, 3 …. (32) 
𝜕𝑥 0 𝜕𝑡    0 2 0 

𝜆  1 − 𝛽  𝑐  2  𝑥, 𝑡 (24) 
𝜕 

𝑐 2 𝑥, 𝑡 + 
𝜕 

𝑐 2 𝑥, 𝑡 + 𝜆 + 𝛾 𝑥 𝑐 2 𝑥, 𝑡  
  

5. . GENERATING FUNCTIONS OF THE 
QUEUE LENGTH: THE TIME - DEPENDENT 
SOLUTION 

𝜕𝑥 𝑛 𝜕𝑡 𝑛 2 𝑛 

= 𝜆 1 − 𝛽 𝑐 2 𝑥, 𝑡  
𝑛 

In this section we obtain the transient solution for 
the above set of dfferential- difference equations. 

+        𝜆𝛽 𝑐𝑘 𝑐 2 𝑥, 𝑡 , 5.1. Theorem 
𝑘=1 

𝑛 ≥ 1 (25) 

𝑑 
𝑄 𝑡 + 𝜆𝑄 𝑡 = 1 − 𝛼 𝜆𝑄 𝑡  

𝑑𝑡 

The system of differential difference 
equations to describean𝑀 𝑋 /𝐺/1 queue with three 
stages of heterogeneous service, feedback and 
Bernoulli vacation and optional server vacation with 

𝑚 

+ 1 − 𝜃    𝛾 𝑥 𝐶 1   𝑥, 𝑡 𝑑𝑥 
restricted admissibility are given by equations (16)  to 
(31)  with  initial  condition  (32)  and  the  generating 

0 

𝑚 
+ 𝛾 𝑥 𝐶 2 𝑥, 𝑡 𝑑𝑥 + (1 

functions of transient solution are given by equations 
(90) to (94). 

2 0 

𝑚 
0 

Proof: We define the probability generating 
− 𝑝)  1 − 𝑟         𝜇   𝑥  𝑃 3   𝑥, 𝑡 𝑑𝑥 (26) functions, 

3 0 
0 𝑚 

The above equations are to be solved subject to the 
following boundary conditions: 

𝑃 1   0, 𝑡  =  𝛼𝜆𝐶 𝑄 𝑡  

𝑃 𝑖 𝑥, 𝑧, 𝑡 = 𝑧𝑛 𝑃 𝑖 𝑥, 𝑡 ; 𝑃 𝑖 𝑧, 𝑡  
𝑛=0 

𝑚 
𝑛       𝑖  

𝑛 𝑛+1 
𝑚 

+ 1 − 𝜃    
 
𝛾 𝐶 1 𝑥, 𝑡 𝑑𝑥 

= 𝑧 
𝑛=0 

𝑃𝑛  𝑡 , 𝑓𝑜𝑟 

1 𝑛+1 
0 

𝑚 𝑖  = 1,2,3. .. (33) 
+         𝛾    𝑥  𝐶  2    𝑥, 𝑡 𝑑𝑥 𝑚 

2 𝑛+1 
0 𝐶 𝑖 𝑥, 𝑧, 𝑡 = 𝑧𝑛 𝐶 𝑗 𝑥, 𝑡 ; 

+ 𝑝  1 − 𝑟 𝑚 
+   1 − 𝑝    1 − 𝑟  𝑚, 𝑛 ≥ 0 (27) 

𝑚 

𝑛 

𝑛=0 

𝑚 

𝑃 2   0, 𝑡   =        𝜇    𝑥 𝑃 1   𝑥, 𝑡 𝑑𝑥, 𝑛 𝐶  𝑖 𝑧, 𝑡 = 𝑧𝑛 𝐶
 𝑖

 𝑡 , 𝐶 𝑧  
𝑛 1 𝑛 

0 
𝑛 

𝑛=0 
 
 

 3  

≥ 0 28  
𝑚  2  

𝑚 

= 𝑐 𝑧𝑛 
𝑃𝑛  0, 𝑡 = 𝜇2 𝑥 𝑃𝑛 𝑥, 𝑡 𝑑𝑥, 𝑛 

0 

𝑛 

𝑛=0 

≥ 0 29  

𝑚 

𝐶 1 0, 𝑡 = 𝑟 1 − 𝑝 𝜇 𝑥 𝑃 3 𝑥, 𝑡 𝑑𝑥 
0 

𝑚 

+ 𝑟𝑝, 𝜇 𝑥 𝑃 3 𝑥, 𝑡 𝑑𝑥, 
0 

𝑓𝑜𝑟  𝑗  = 1,2 … (34) 

which are convergent inside the circle given by 𝑧 ≤ 1 
and define the Laplace transform of a function 𝑓(𝑡) 
as 

𝑓  𝑠   =    
𝑚  

𝑒−𝑠𝑡 𝑓  𝑡  𝑑𝑡,   R  𝑠 > 0. (35) 

𝑛 ≥ 0 30  

𝑚 

𝐶 2 0, 𝑡 = 𝜃 𝛾 𝑥 𝐶 1 𝑥, 𝑡 𝑑𝑥, 𝑛 
0 

0 

Taking the Laplace transform of equations (16) to 
(31) and using (32), we obtain 

𝜕 1  

≥ 0 31  
 

𝜕𝑥 
𝑃0  𝑥, 𝑠 + 𝑠 + 𝜆𝛼 + 𝜇1 𝑥   

We assume that initially there are no customers in 
the system and the server is idle. So the initial 
conditions are 

𝐶 𝑗 0 = 𝐶 𝑗 0 = 0, 𝑗 = 1,2, … 𝑎𝑛𝑑 𝑄 0  

 
 1  

𝑃0       𝑥, 𝑠  = 0 (36) 

0 0 
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𝑐𝑘 𝐶𝑛−𝑘 

𝜕 1       1  
𝑚  1  

𝑚  2  

𝜕 
𝑃𝑛 𝑥, 𝑠 + 𝑠 + 𝜆𝛼 + 𝜇1 𝑥 𝑃𝑛  𝑥, 𝑠       𝛾1 𝑥 𝐶𝑛+1 𝑥, 𝑠 𝑑𝑥 + 𝛾2 𝑥 𝐶𝑛+1 𝑥, 𝑠 𝑑𝑥 

𝑥 
𝑛 

     1  

0 0 

+ 𝑝 1) − 𝑟  
= 𝜆𝛼 𝐶𝐾𝑃𝑛−𝑘 𝑥, 𝑠 , 𝑚  3  

𝑘=1 

𝑛 ≥ 1 (37) 
     𝜇3  𝑥 𝑃𝑛 

0 

 𝑥, 𝑠 𝑑𝑥 
  

+ 1 − 𝑝 1 
𝜕 2       2  

𝑚
 3  

 
 

𝜕𝑥 
𝑃0  𝑥, 𝑠 + 𝑠 + 𝜆𝛼 + 𝜇2 𝑥 𝑃0  𝑥, 𝑠 , 𝑛 −         𝑟 𝑃𝑛 

0 
 𝑥, 𝑠 𝜇3 𝑥 𝑑𝑥 , 𝑛 

= 0 (38) 

𝜕     2  2  2  

≥ 0 (47) 
𝑚  

1  
 

 

𝜕𝑥 
𝑃𝑛  𝑥, 𝑠 + 𝑠 + 𝜆𝛼 + 𝜇2(𝑥) 𝑃𝑛 

𝑛 
 2  

 𝑥, 𝑠  𝑃𝑛  0, 𝑠   =         𝜇1  𝑥   𝑃𝑛 
0 

 𝑥, 𝑠 𝑑𝑥, 

= 𝜆𝛼 𝑐𝑘 𝑃𝑛−𝑘 𝑥, 𝑠 , 𝑛 ≥ 1 (39) 𝑛 ≥ 0 (48) 

𝑘=1  3  
𝑚  

2  

𝜕     3  3  𝑃𝑛  0, 𝑠   =        𝜇2   𝑥 𝑃𝑛  𝑥, 𝑠 𝑑𝑥 , 𝑛 
 

 

𝜕𝑥 
𝑃0  𝑥, 𝑠 + 𝑠 + 𝜆𝛼 + 𝜇3(𝑥) 𝑃0  𝑥, 𝑠  0 

≥ 0 (49) 

 
𝜕 3  

= 0 (40) 

     3  

     1  

𝐶𝑛  0, 𝑠  
𝑚 

𝑃𝑛 𝑥, 𝑠 + 𝑠 + 𝜆𝛼 + 𝜇3 𝑥 𝑃𝑛  𝑥, 𝑠   3  = 𝑟  1 − 𝑝          𝜇   𝑥 𝑃 𝑥, 𝑠 𝑥 𝑑𝑥 
𝜕𝑥 

𝑛 
3 𝑛 

0 
 2  𝑐  𝑃 𝑥, 𝑠 , 𝑛 ≥ 1 

𝑚  
3  

= 𝜆𝛼 𝑘 

𝑘=1 

𝜕 1  

𝑛−𝑘  
 
 

     1  

(41) + 𝑟𝑝 𝜇3 𝑥 𝑃𝑛−1 𝑥, 𝑠 𝑥 𝑑𝑥, 
0 

𝑛 ≥ 0 (50) 
 

 

𝜕𝑥 
𝐶0  𝑥, 𝑠 + 𝑠 + 𝜆𝛽 + 𝛾1 𝑥 𝐶0  𝑥, 𝑠   

     2  
𝑚  1  

= 0 (42) 𝐶𝑛  0, 𝑠   =  𝜃       𝛾1   𝑥 𝐶𝑛 
0 

 𝑥, 𝑠 𝑑𝑥 , 𝑛 

𝜕 1       1  ≥ 0 (51) 
 

 

𝜕𝑥 
𝐶𝑛  𝑥, 𝑠 + 𝑠 + 𝜆𝛽 + 𝛾1(𝑥) 𝐶𝑛 

𝑛 

 𝑥, 𝑠  
Now multiplying equations (37), (39), (41), (43) and 

= 𝜆𝛽 
 1

 𝑥, 𝑠 , 𝑛 ≥ 1 
𝑘=1 

𝜕 2  

 
 
 
 

     2  

(43) 
(45) by 𝑧𝑛 and summing over n from 1 to𝑚, adding  
to equations (36), (38), (40), (42), (44) and using the 
generating functions defined in (33) and (34) we get 

𝜕 
𝐶0  𝑥, 𝑠 + 𝑠 + 𝜆𝛽 + 𝛾2 𝑥 𝐶0  𝑥, 𝑠  𝜕 1  𝑃 𝑥, 𝑧, 𝑠 + 𝑠 + 𝜆𝛼 1 − 𝐶 𝑧   

 

𝑥 

= 0 (44) 
𝜕𝑥 

0 
 

     1  

𝜕 2       2  + 𝜇1 𝑥 𝑃  𝑥, 𝑧, 𝑠  
 

 

𝜕𝑥 
𝐶𝑛  𝑥, 𝑠 + 𝑠 + 𝜆𝛽 + 𝛾2 𝑥 𝐶𝑛 𝑥, 𝑠  

𝑛 

 
𝜕 2  

= 0 (52) 

= 𝜆𝛽 𝑐 𝐶
 2

 𝑥, 𝑠 , 𝜕 
𝑃0  𝑥, 𝑧, 𝑠 + 𝑠 + 𝜆𝛼(1 − 𝐶 𝑧 ) 

𝑘 

𝑘=1 
𝑛−𝑘 𝑥 

 2  

+ 𝜇2(𝑥) 𝑃 𝑥, 𝑧, 𝑠  
𝑛 ≥ 1 (45) 

 

 𝑠 + 𝜆𝛼 𝑄 𝑠  
 

𝜕 3  𝑃 𝑥, 𝑧, 𝑠  
 

 

= 0 (53) 

𝑚  1  𝜕 0 

= + 1 − 𝜃 𝛾1 𝑥 𝐶0 𝑥, 𝑠 𝑑𝑥 𝑥    
 3  

𝑚 
0 

𝑚    +   𝑠 + 𝜆𝛼  1 − 𝐶  𝑧     + 𝜇3 𝑥   𝑃 𝑥, 𝑧, 𝑠  
 3  +          1 − 𝑝    −𝑟          𝜇  (𝑥)𝑃 𝑥, 𝑠 𝑑𝑥 (46) = 0 54  

3 0 
0 0 𝜕 1  

 
 

𝜕𝑥 
𝐶0  𝑥, 𝑧, 𝑠  

     1  

𝑃0 

 
 

 0, 𝑠 = 𝛼𝜆𝑐𝑛 + 1𝑄 𝑠 1 − 𝜃  

 1  

+   𝑠 + 𝜆𝛽(1 − 𝐶 𝑧  ) + 𝛾1(𝑥) 𝐶 𝑥, 𝑧, 𝑠  
= 0 (55) 
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 0, 𝑧, 𝑠 𝑒 0 

0 

𝜕 2  Where 𝑃 1 (0, 𝑧, 𝑠) is given by equation (58). 
 

 

𝜕𝑥 
𝐶0  𝑥, 𝑧, 𝑠   

 
     2  

 

Again integrating equation (63) by parts with 
+ 𝑠 + 𝜆𝛽 1 − 𝐶 𝑧 + 𝛾2 𝑥 𝐶  𝑥, 𝑧, 𝑠  respect to 𝑥 yields, 
= 0 (56)  1  

For the boundary conditions, we multiply both sides 
of equation (47) by 𝑧𝑛 sum over n from 0 to 𝑚, and 

𝑃 𝑧, 𝑠     

  (1 − 𝐵1 ) 

use the equation (33) and (34) to get  1  
= 𝑃 

  𝑠 + 𝜆𝛼 1 − 𝐶 𝑧     
 0, 𝑧, 𝑠       (64) 

 1  
𝑧 𝑃 0, 𝑧, 𝑠  

𝑚 

   𝑠 + 𝜆𝛼 1 − 𝐶 𝑧   
  

 1  

= 𝛼𝜆𝑐  𝑧  𝑄  𝑠   +   1 − 𝜃         𝛾1  𝑥 𝐶 𝑥, 𝑧, 𝑠 𝑑𝑥 
𝑚   

0
 

 2  

+         𝛾2  𝑥 𝐶 𝑥, 𝑧, 𝑠 𝑑𝑥 
0 

Where 
 

𝐵1 𝑠 + 𝜆𝛼 1 − 𝐶 𝑧    
𝑚 

 3 𝑚 

+ 𝑝𝑧 1 − 𝑟 𝜇3 𝑥 𝑃  𝑥, 𝑧, 𝑠 𝑑𝑥 = 𝑒− 𝑠+𝜆𝛼 1−𝐶 𝑧 𝑥 𝑑𝐵1 (𝑥) (65) 
0 0 𝑚  3  

+ 1 − 𝑝 1 − 𝑟 𝜇3 𝑥 𝑃  𝑥, 𝑧, 𝑠 𝑑𝑥 is the Laplace-Stieltjes transform of the first stage 
𝑚 

0  service time 𝐵1 (𝑥) Now multiplying both sides of 
 1  −   1 − 𝜃         𝛾   𝑥 𝐶 𝑥, 𝑠 𝑑𝑥 equation (63) by 𝜇 (𝑥) 

1 0 1 
0 

𝑚      2  and integrating over 𝑥 we obtain 
− 𝛾2 𝑥 𝐶0 

0 
 𝑥, 𝑠 𝑑𝑥 − 1 − 𝑝 1 𝑚       1  1     

𝑚  
3  

− 𝑟 𝜇3 𝑥 𝑃0  𝑥, 𝑠 𝑑𝑥 (57) 
     𝑃 

0 

 0, 𝑧, 𝑠 𝑑𝑥 = 𝑃  0, 𝑧, 𝑠 𝐵1 

0 

Using equation (31), equation (40) becomes 

     1  

𝑧 𝑃 0, 𝑧, 𝑠  1 +   𝜆𝛼  𝐶 𝑧   − 1 𝑠 Q(s) + 1 − 

[𝑠 + 𝜆𝛼  1 − 𝐶 𝑧   ] (66) 

Similarly, on integrating equations (53) to (56) from 
0 𝑡𝑜𝑥, we get 

𝜃 
𝑚 

𝛾 𝑥 𝐶
 1

 𝑥, 𝑧, 𝑠 𝑑𝑥 +      2  2  
0 1 

𝑚  2  
𝑃 𝑥, 𝑧, 𝑠  = 𝑃 0, 𝑧, 𝑠  

     𝛾2 𝑥 𝐶 𝑥, 𝑧, 𝑠 𝑑𝑥 + 𝑝𝑧 + 1 − 𝑝 1 − − 𝑠+𝜆𝛼 1−𝐶 𝑧 𝑥− 
𝑥 

𝜇 𝑡 𝑑𝑡 
0    

𝑟 
𝑚 

𝜇 𝑥 𝑃
 3

 𝑥, 𝑧, 𝑠 𝑑𝑥. 𝑒 0 2 
(58)         

(67) 

0 3 3  
𝑃 𝑥, 𝑧, 𝑠 = 𝑃 

 3   0, 𝑧, 𝑠 𝑒 − 𝑠+𝜆𝛼 1−𝐶 𝑧 𝑥− 
𝑥 

𝜇 3 𝑡 𝑑𝑡 

Performing similar operation on equations (48), 
(49), (50) and (51) we get, 

(68) 
     1  

     2  𝑃 
𝑚  

1   0, 𝑧, 𝑠 = 𝜇 𝑥 𝑃 
 
 𝑥, 𝑧, 𝑠 𝑑𝑥 

 
(59) 

𝐶 𝑥, 𝑧, 𝑠  
     1  

 
− 𝑠+𝜆𝛽 1−𝐶 𝑧 𝑥− 

𝑥 
𝛾 𝑡 𝑑𝑡 

1 = 𝐶  0, 𝑧, 𝑠 𝑒  0 1 (69) 
 

     3  
𝑚  2   2  𝐶 𝑥, 𝑧, 𝑠  

𝑃 

 
     1  
𝐶 

 0, 𝑧, 𝑠 = 𝜇2 𝑥 𝑃 
0 

 

 0, 𝑧, 𝑠  

 𝑥, 𝑧, 𝑠 𝑑𝑥 (60)      2  

= 𝐶 − 𝑠+𝜆𝛽 1−𝐶 𝑧 𝑥− 
𝑥 

𝛾2 𝑡 𝑑𝑡 
 

(70) 

𝑚  
3  

= 𝑟(1 − 𝑝 + 𝑝𝑧) 𝜇3 𝑥 𝑃 
0 

 𝑥, 𝑧, 𝑠 𝑑𝑥 (61) 
 

 2 3 1  

Where 𝑃 𝑥, 𝑧, 𝑠 ,𝑃 𝑥, 𝑧, 𝑠 ,𝐶 𝑥, 𝑧, 𝑠 , and 
     2  

     2  
𝐶 0, 𝑧, 𝑠  

𝑚  
1  

= 𝜃 𝛾1 𝑥 𝐶 
0 

 

 
 𝑥, 𝑧, 𝑠 𝑑𝑥 

 

 
(62) 

𝐶 𝑥, 𝑧, 𝑠 are given by equations (59) to (62). 
Again integrating equations 

(67) to (70) by parts with respect to 𝑥 yields, 

Integrating equation (52) between 0 to 𝑥, we get 

 1 1  

𝑃 0, 𝑧, 𝑠  = 𝑃 𝑥, 𝑧, 𝑠  
−  𝑠+𝜆𝛼   1−𝐶  𝑧     𝑥−  

𝑥 
𝜇     𝑡  𝑑𝑡 

𝑒 0 1  63  

0 
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1 

2 

1 

3 3 

 2  

𝑃 𝑧, 𝑠  
 
 

  (1 − 𝐵2 ) 

 
 

𝐶 1(𝑠 + 𝜆𝛽 1 − 𝐶 𝑧   
𝑚 

= 𝑒− 𝑠+𝜆𝛽 1−𝐶 𝑧 𝑥 𝑑𝐶1 𝑥  

 
 

(79) 

     2    𝑠 + 𝜆𝛼  1 − 𝐶 𝑧  0 

= 𝑃  0, 𝑧, 𝑠    
   𝑠 + 𝜆𝛼 1 − 𝐶 𝑧   
  
  

(71) 𝐶2 (𝑠 + 𝜆𝛽 1 − 𝐶 𝑧   
𝑚 

= 𝑒− 𝑠+𝜆𝛽 1−𝐶 𝑧 𝑥 𝑑𝐶2 𝑥  

0 

 
 

(80) 

 3  

𝑃 𝑧, 𝑠   
 

  (1 − 𝐵3) 

is the Laplace-Stieltjes transform of the vacation 

time 𝐶 1(𝑥) and 𝐶 2(𝑥)) Now multiplying both sides 

     3  

= 𝑃 

  𝑠 + 𝜆𝛼 1 − 𝐶 𝑧     
 0, 𝑧, 𝑠    

   𝑠 + 𝜆𝛼 1 − 𝐶 𝑧   
  
  

 
(72) 

of equation (70) by 𝛾 1(𝑥) 

and (71) by 𝛾 2(𝑥) and integrating over 𝑥 we obtain 
𝑚 

 1  
𝐶 𝑥, 𝑧, 𝑠 𝛾 𝑥  

     1  

𝐶 𝑧, 𝑠     

0 
     1     

= 𝐶 0, 𝑧, 𝑠  𝐶1 𝑠 

  (1 − 𝐶1) + 𝜆𝛽  1 − 𝐶 𝑧 (81) 

     1  

= 𝐶 

  𝑠 + 𝜆𝛽 1 − 𝐶 𝑧     
 0, 𝑧, 𝑠        

   𝑠 + 𝜆𝛽 1 − 𝐶 𝑧      

 

(73) 
𝑚 

    𝐶
 2

 𝑥, 𝑧, 𝑠 𝛾 𝑥 = 𝐶
 2

 0, 𝑧, 𝑠 𝐶 

 
 𝑠 

 
 

 
 2  

𝐶 𝑧, 𝑠  

  
  

 
 

  (1 − 𝐶2) 

0 

+ 𝜆𝛽  1 − 𝐶 𝑧 (82) 

Using equation (66), equation (59) reduces to 

 2 1  

𝑃 0, 𝑧, 𝑠  = 𝑃 0, 𝑧, 𝑠 𝐵1    𝑅 (83) 

     2  
= 𝐶 

  𝑠 + 𝜆𝛽 1 − 𝐶 𝑧     
 0, 𝑧, 𝑠       

 
(74) Now using equations (77) and (68) in (60), we get 

𝑠 + 𝜆𝛽  1 − 𝐶 𝑧  3  

𝑃 0, 𝑧, 𝑠  
 1  

= 𝑃 0, 𝑧, 𝑠 𝐵1 

 
 

 𝑅 𝐵2  𝑅 (84) 
Where 

 

𝐵2 𝑠 + 𝜆𝛼 1 − 𝐶 𝑧    
𝑚 

By using equations (78) and (83) in (61), we get 

 1  

𝐶 0, 𝑧, 𝑠  

= 𝑒− 𝑠+𝜆𝛼 1−𝐶 𝑧 𝑥 𝑑𝐵2 (𝑥) (75) 
 

 

= 𝑟(+𝑝𝑧)𝐵1 

 
 

 𝑅 𝐵2 

 
 

 𝑅 𝐵3 

 1  
 𝑅 𝑃 0, 𝑧, 𝑠 (85) 

0 
 

𝐵3 𝑠 + 𝜆𝛼 1 − 𝐶 𝑧    
𝑚 

= 𝑒− 𝑠+𝜆𝛼 1−𝐶 𝑧 𝑥 𝑑𝐵3 (𝑥) 

Using equations (81) and (85), we can 

write equation (62) as 
(76)  2  

0 𝐶 0, 𝑧, 𝑠  

is the Laplace-Stieltjes transform of the second and 
third     stage     service     time  𝐵 (𝑥) and 𝐵 (𝑥) 

= 𝜃𝑟 1 − 𝑝 
 

  − 𝑝𝑧 𝐵 𝑅 𝐵 
 

  𝑅  𝐵 
 

 1   𝑅  𝐶   𝑇 𝑃 0, 𝑧, 𝑠 (86) 
2 3 1 2 3 1 

respectively. Now multiplying both sides of equation 
(68) by 𝜇2 𝑥 and  (69)  by  𝜇3  𝑥  and  integrating 
over 𝑥 we obtain 

𝑚
 2  

Now using equations (78), (79) and (82), equation 
(58) becomes 

      
𝑧𝑃 0, 𝑧, 𝑠 = 1 + 𝜆𝛼 𝐶 𝑧 − 1 − 𝑆]𝑄 𝑠 +1 − 

     𝑃 𝑥, 𝑧, 𝑠 𝜇2 𝑥             1  
0 

     2     𝜃 𝐶1 𝑇 𝐶  0, 𝑧, 𝑠  
= 𝑃 0, 𝑧, 𝑠 𝐵2 𝑠    2  
+ 𝜆𝛼  1 − 𝐶 𝑧 (77) +𝐶2  𝑇 𝐶 0, 𝑧, 𝑠  

+ 𝑝𝑧 + 1 − 𝑝 1 
𝑚         3  

    𝑃
 3  

  𝑥, 𝑧, 𝑠  𝜇    𝑥   = 𝑃
 3  

  0, 𝑧, 𝑠 𝐵 𝑠 − 𝑟  𝐵3   𝑅 𝑃 0, 𝑧, 𝑠 (87) 
0 

+ 𝜆𝛼  1 − 𝐶 𝑧 (78) 

and 

Similarly using equations (84), (85) and (86), 
equation (87) reduces to 

2 
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1 2 3 1 

2 

 1  

𝑃 0, 𝑧, 𝑠  
 

 

1 + 𝜆𝛼 𝐶 𝑧 − 1 − 𝑠 𝑄(𝑠) 
= (88) 

𝐷𝑅 

time-dependent analysis. This can be obtained by 
applying the well-known Tauberian property, 

 

lim 𝑠 𝑓  𝑠   = lim 𝑓(𝑡) (95) 

Where 
𝑠→𝑚 𝑡→𝑚 

In order to determine 
 

   

𝐷𝑅 = 𝑧 − 1 − 𝑝 + 𝑝𝑧 𝐵1 𝑅 𝐵2 𝑅 𝐵3 𝑅  
 

 1 − 𝑟 + 𝑟𝐶1  𝑇     1 − 𝜃 + 𝜃𝐶2  𝑇 (89) 

 
 

𝑅 = 𝑠 + 𝜆𝛼 1 − 𝐶(𝑧) 𝑎𝑛𝑑 𝑇 = 𝑠 + 𝜆𝛽 1 − 𝐶(𝑧) . 

Substituting the equations (83), (84), (85) and (88) 
into equations (64), (71), (72), (73) and (74) we get 

     1  

𝑃 𝑧, 𝑠  
 

   

 (1 − 𝑠𝑄(𝑠) + 𝜆𝛼 𝐶 𝑧 − 1 𝑄 𝑠 [1 − 𝐵1 𝑅 ] 
= 

                        

Thus𝑃 𝑧, 𝑠 , 𝑃 𝑧, 𝑠 ,𝑃 𝑧, 𝑠 , 𝐶 𝑧, 𝑠 and 
     2  

𝐶 𝑧, 𝑠 completely, we have yet to determine the 
unknown 𝑄 which appears in the numerators of the 
right hand sides of equations (90) to (94). For that 
purpose, we shall use the normalizing condition 

𝑃 1 1 + 𝑃 2 1 + 𝑃 3 1 + 𝐶(1) 1 + 𝐶(2) 1 + 𝑄 
= 1 (96) 

5.2. Theorem 

The steady state probabilities for 

anM X /G/1 feedback (9q0u)eue with three stage 
 

 2  
𝑃 𝑧, 𝑠  

𝐷𝑅 𝑅 
heterogeneous service, feedback, Bernoulli  vacation 
and optional server vacation with restricted 

 
 

(𝐵 
 

  𝑅 (1 − 𝑠𝑄(𝑠) ) 
 

 1 − 𝐵 admissibility are given by 
1   2   𝜆𝛼𝐸 𝐼 𝐸 𝐵 𝑄 

= 
 +𝜆𝛼  𝐶  𝑧   − 1 𝑄 𝑠 𝑅   (91) 𝑃(1) 1   =

  1 
 (97) 

 

 
 3  

𝑃 𝑧, 𝑠  
 

 

𝐷𝑅 𝑅 
 
 

  

𝑑𝑟 

𝑃(2) 1 = 
𝜆𝛼𝐸 𝐼 𝐸 𝐵2 𝑄 

𝑑𝑟 

 
 

(98) 

(𝐵1 𝑅 𝐵2 𝑅 (1 − 𝑠𝑄(𝑠) ) 
 

 

= 
+𝜆𝛼 𝐶 𝑧 − 1 𝑄 𝑠  

𝐷𝑅 

 
 

 1 − 𝐵3 𝑅   

𝑅 

 
𝑃(3) 1  = 

𝜆𝛼𝐸 𝐼 (𝐸9 2𝐵)3  𝑄 

 
 

(99) 
     1  

𝐶 

 
 

 

 𝑧, 𝑠  
(𝑟 1 − 𝑝 + 𝑝𝑧 ) 
 

  

 

𝐶(1) 1 = 

𝑑𝑟 

𝜆𝛼𝑟𝐸 𝐼 𝐸 𝐶1 𝑄 
 

𝑑𝑟 

 
 

(100) 

= 
𝐵1 𝑅 𝐵2 𝑅 𝐵3 𝑅

 (1 − 𝑠𝑄 𝑠 )
 

𝐷𝑅 
     [1 − 𝐶1 𝑇 ] 

 
𝐶(2) 1 = 

𝜆𝛼𝑟𝜃𝐸 𝐼 𝐸 𝐶2 𝑄 
 

𝑑𝑟 

 
(101) 

+ 𝜆𝛼 𝐶 𝑧 − 1 𝑄 𝑠   
 

 2  

𝐶 𝑧, 𝑠  

(93) 
𝑇 where 

𝑑𝑟 = 1 − 𝑝 − 𝜆𝐸 𝐼  
 

    

𝜃𝑟 1 − 𝑝 + 𝑝𝑧 𝐵1 𝑅 𝐵2 𝑅 𝐵3 𝑅 𝐶1 𝑇  
= (1 

 

 𝛼 𝐸 𝐵1 + 𝐸 𝐵2 𝐸 𝐵3    

   
− 𝑠𝑄 𝑠 ) 

𝐷𝑅 
 

     [1 − 𝐶 𝑇 ] 

+ 𝑟𝛽𝐸 𝐶  , (102) 

And 𝐸 𝐶 = 𝐸 𝐶1 + 𝜃𝐸 𝐶2 . 
+ 𝜆𝛼  𝐶  𝑧   − 1 𝑄 𝑠 1

 
𝑇 

(94) 𝑃(1)  1 , 𝑃 (2)  1 , 𝑃 (3)  1 , 𝐶 (1)  1 𝐶 (2)  1 𝑎𝑛𝑑 𝑄are the 

where DR is given by equation (89). Thus steady state probabilities that the server is providing 
     1  2  3  

𝑃 𝑧, 𝑠 , 𝑃 𝑧, 𝑠 ,𝑃 
     1  

 𝑧, 𝑠 , 𝐶 
 

 𝑧, 𝑠 and 
first stage of service, second stage of service, third 
stage of service, server under phase one and server 

      

𝐶 𝑧, 𝑠 are completely determined from equations 
(90) to (94) which completes the proof of the 
theorem 

6. THE STEADY STATE RESULTS 

In this section, we shall derive the steady 
state probability distribution for our queueing 
model. To define the steady probabilities we 
suppress the argument t wherever it appears in the 

under phase two vacation, server under idle 
respectively without regard to the number of 
customers in the system. 

Proof: Multiplying both sides of equations (90) to 
(94) by s, taking limit as 𝑠 → 0, applying property 
(95) and simplifying, we obtain 
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1 

          

3 

𝑃 1 𝑧  
(𝜆𝛼 𝐶 𝑧 − 1 ) 

 
  1 − 𝐵 𝑓 𝑧 𝑄 

 
 

𝜆𝛼 𝐶 𝑧 − 1 𝐵1 𝑓1 𝑧   
 

 

 1 − 𝐵2 𝑓1 𝑧 𝑄 
+ 

= 
1 1 (103) 𝑓1 𝑧 𝐷 𝑧  

𝑓1 𝑧 𝐷 𝑧  

 
 

𝑃 2  𝑧     

 
 

𝜆𝛼 𝐶 𝑧 − 1 𝐵1 

 𝑓1     𝑧     𝐵2   𝑓1     𝑧 

1 − 𝐵 
(𝜆𝛼 𝐶 𝑧 − 1 𝐵 𝑓 𝑧 ) 3

 𝑄 
      1 1  𝑓1 𝑧   

 1 − 𝐵2 𝑓1 𝑧 𝑄 
= 

𝑓   𝑧 𝐷 𝑧 
(104)

 

𝑃 3 𝑧  
    (𝜆𝛼  𝐶  𝑧   − 1 ) 

𝐵1  𝑓1     𝑧    𝐵2   𝑓1  𝑧   
 

 

+ 
𝑓1 𝑧 𝐷 𝑧  

1 − 𝑝 + 𝑝𝑧) 
𝜆𝛼𝑟 

(𝐶 𝑧 − 1
 𝐵 𝑧  

 
 

 1 − 𝐶1 𝑓2 𝑧 𝑄 
+ 

𝑓2 𝑧 𝐷 𝑧  
 1 − 𝐵3 𝑓1 𝑧 𝑄 

= 
𝑓1 𝑧 𝐷 𝑧  

(105) 
1 − 𝑝 + 𝑝𝑧) 

𝜆𝛼𝑟𝜃 
(𝐶 𝑧 − 1

 𝐵 𝑧 𝐶1 𝑓2 𝑧    

𝐶 1 𝑧  
1 − 𝑝 + 𝑝𝑧) 

 
 

 1 − 𝐶2 𝑓2 𝑧 𝑄 + 
𝑓   𝑧  𝐷 𝑧 

(108)
 

(𝜆𝛼𝑟 
(𝐶 𝑧 − 1

 ) 
 

  

𝐵 𝑧 1 − 𝐶1 𝑓3 𝑧 𝑄 

2 

We see that for 𝑧 = 1, 𝑊𝑞 1 is indeterminate of the 
0 

= 
𝑓3 𝑧 𝐷 𝑧  (106) form . Therefore, we apply L’Hopital’s rule and on 

0 

 

𝐶 2 𝑧  
𝜆𝛼𝑟𝜃 

simplifying we obtain the result (109), where 
𝐶 1 = 1, 𝐶′ 1 = 𝐸 𝐼 is mean batch size of the 

 
  arriving customers, −𝐵′ 0 = 𝐸 𝐵𝑖 , −𝐶′ 0  

1 − 𝑝 + 𝑝𝑧)    𝑖 𝑗 

    
 𝐶  𝑧   − 1   

         1 − 𝐶2   𝑓3    𝑧    𝑄 
 

  

     𝐵   𝑧   𝐶1  𝑓3  𝑧     
= 

𝑓 𝑧 𝐷 𝑧  

 

 
(107) 

 
 

𝑊𝑞 1  
′ 

= 𝐸 𝐶𝑗 , 𝑖 = 1,2,3, … 𝑎𝑛𝑑 𝑗 = 1,2, … 

 
𝐸 𝐵1 + 𝐸 𝐵2 𝐸 𝐵3   

Where 

𝐷 𝑧 = 𝑧 − 1 − 𝑝 

𝜆𝛼𝐶 (1)   
= 

+𝑟𝐸 𝐶  
 
 

𝑑𝑟 

 

(109) 

 
   

+ 𝑝𝑧 𝐵1 𝑓1 𝑧 𝐵2 𝑓1 𝑧 𝐵3 𝑓1 𝑧   
 

 1 − 𝑟 + 𝑟𝐶1 𝑓2 𝑧 1 − 𝜃 + 𝜃𝐶2 𝑓2 𝑧 , 
 

𝐵 𝑧 = 𝐵1 𝑓1 𝑧 𝐵1  𝑓1 𝑧 𝐵3 𝑓1 𝑧 , 𝑓1 𝑧  

= 𝜆𝛼 1 − 𝐶 𝑧 , 

𝑎𝑛𝑑𝑓2 𝑧 = 𝜆𝛽 1 − 𝐶 𝑧 . 

wheredr is given by equation (102). Therefore 
adding 𝑄 to equation (109),equating to 1 and 
simplifying, we get 

Q= 1 − 𝜌 (110) 

and hence the utilization factor 𝜌 of the system is 
given by 

𝐸 𝐵 + 𝐸 𝐵 𝐸 𝐵    

Let 𝑊𝑞 (𝑧) denote the probability generating function 𝛼𝜆𝐸 𝐼    1 2 3 
+𝑟𝐸 𝐶  

of the queue size irrespective of the state of the 
system. Then adding equations (103) to (107) we 
obtain 

𝑊𝑞 𝑧 = 𝑃(1) 𝑧 + 𝑃(2) 𝑧 + 𝑃(3) 𝑧 + 𝐶(1) 𝑧  

+ 𝐶(2) 𝑧  

𝜆𝛼 𝐶 𝑧 − 1  
 

 

𝑊 𝑧 =
 1 − 𝐵1 𝑓1 𝑧 𝑄 

𝑞 𝑓1 𝑧 𝐷 𝑧  

𝜌 = 
𝑑1 − 𝑝 − 𝑟𝜆𝐸  𝐼   𝛽 − 𝛼 𝐸(𝐶)] 

(111)
 

where𝜌 < 1 is the stability condition under which 
the steady state exists. Equation (110) gives the 
probability that the server is idle. Substituting 𝑄 
from (110) into (108), we have completely and 
explicitly determined 𝑊𝑞 𝑧 ,the  probability 

generating function of the queue size. 

7. THE MEAN QUEUE SIZE AND THE MEAN 
SYSTEM SIZE 

Let 𝐿𝑞 denote the mean number of customers in the 

queue under the steady state. Then 
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1 

2   + 𝐸 𝐵  + 𝐸 
𝐵 2      

1 2 3 1 2 

2 

2 2 

2 

2 

2 

𝑑 
𝐿𝑞 = 

𝑑𝑧 
𝑊𝑞 𝑧 at 𝑧 = 1 

Since  this  formula  gives  0/0  form,  then  we   write 
𝑊   𝑧   given in (93) as 𝑊   𝑧   = 

𝑁  𝑧    
where  𝑁  𝑧   and 

 

equations (113) to (101) into equations (112) we 
obtain Lq in the closed form. 

Further, we find the mean system size 𝐿 using Little’s 
formula. Thus we have 

𝑞 𝑞 𝐷 𝑧  

𝐷  𝑧    are  numerator  and  denominator  of the  right 𝐿  = 𝐿𝑞 + 𝜌 117  
hand side of (93) respectively. Then we use 

where𝐿𝑞 has been found by equation (112) and 𝜌 is 
𝑑 

𝐿   = lim 𝑊 𝑧  
 

obtained from equation (111). 𝑞 
𝑧→1 𝑑𝑧 𝑞

 

 
 

= lim 

(D′ 1  𝑁′′  1  ) 
1

 
−𝑁′ (1)D′′ (1)

 
      𝑄 (112) 

8. PARTICULAR CASE 

Case 1: No feedback, no optional vacation and no 
𝑧→1 𝛽 2(D′ 1 )2 

  

where primes and double primes in (112) denote 
first and second derivative at 𝑧 = 1, respectively. 
Carrying out the derivative at 𝑧 = 1 we have 

𝑁′ 1  
= 𝜆𝛼𝛽𝐸 𝐼 𝐸 𝐵1 + 𝐸 𝐵2 + 𝐸 𝐵3   
+ 𝑟𝐸 𝐶 113  

restricted admissibility. 

Put 𝑝 = 0, 𝜃 = 0, 𝑎𝑛𝑑 𝛼 = 𝛽 = 1in the main results, 
we get 

𝑄  = 1 −  𝜌 118  

𝜌 = 𝜆𝐸 𝐼 𝐸 𝐵1 + 𝐸 𝐵2 + 𝐸 𝐵3   
+ 𝑟𝐸 𝐶1 (119) 

𝑁′ 1  

𝑁′′   2  2   2 2   = 𝜆𝐸 𝐼 𝐸 𝐵1 + 𝐸 𝐵2 + 𝐸 𝐵3   
1 = 𝜆 𝛽𝛼 𝐸 𝐼 𝛼𝐸 𝐵1 + 𝐸 𝐵2 + 𝐸 𝐵3 + 𝑟𝐸 𝐶1 (120) 

+ 𝛽𝑟𝐸 𝐶2 + 𝜃𝐸 𝐶2 )  
1 2 

+ 𝜆𝛼𝛽𝐸 𝐼 𝐼 − 1   𝑁′′ 1  
2 

 
 

2           
 2 + 𝐸 𝐵2  

 𝐸  𝐵     + 𝐸 𝐵     + 𝐸 𝐵     + 𝑟𝐸 𝐶 2 
2

 = 𝜆 𝐸 𝐼    𝐸  𝐵1 2 

1 2 3 + 2𝜆 𝛽𝛼 𝐸 𝐼    + 𝑟𝐸 𝐶2   

 𝛼𝐸 𝐵1 ((𝐸 𝐵2 + 𝐸 𝐵3 ) + 𝛼𝐸 𝐵2 𝐸 𝐵3   
+ 𝛽𝑟𝜃𝐸 𝐶1 𝐸 𝐶2   

+ 𝜆𝐸 𝐼 𝐼 − 1 𝐸 𝐵1 + 𝐸 𝐵2 + 𝐸 𝐵3   
+ 𝑟𝐸 𝐶1   

2 2      2             + 𝐸 𝐵 ) 
+ 2𝜆 𝛽𝛼 𝑟 𝐸 𝐼 𝐸 𝐶 + 2𝜆 𝐸 𝐼    𝐸  𝐵1    (𝐸  𝐵2 3 

x 𝐸 𝐵 + 𝐸 𝐵 + 𝐸 𝐵     + 𝐸 𝐵2 𝐸 𝐵3    
1 2 3 2  𝐸 𝐵 + 𝐸 𝐵    

+ 2𝜆𝑟𝛼𝛽𝑝𝐸  𝐼 𝐸 𝐶 114  

𝐷′ 1 = 

1 − 𝑝 −  𝜆𝐸  𝐼    
(𝛼𝐸  𝐵1      + 𝐸 𝐵2   ) (115) 
+𝐸 𝐵3 + 𝑟𝛽𝐸 𝐶  

D′′ 1  

= 𝜆 2𝑃𝐸 𝐼 + 𝐸 𝐼 𝐼 − 1 𝛼(𝐸 𝐵1   

+ 2𝜆  𝑟  𝐸  𝐼     𝐸  𝐶1 1 2 

+ 𝐸 𝐵3 (121) 

𝐷′ 1  
= −𝜆𝐸 𝐼 𝐸 𝐵1 + 𝐸 𝐵2 + 𝐸 𝐵3   

+ 𝑟𝐸 𝐶1 (122) 

𝐷′′ 1  
= −𝜆𝐸 𝐼 𝐼 − 1 𝐸 𝐵1 + 𝐸 𝐵2 + 𝐸 𝐵3 + 𝑟𝐸 𝐶1   

+ 𝐸 𝐵2 + 𝐸 𝐵3    2  𝐸 𝐵 + 𝐸 𝐵 + 𝐸 𝐵     
− 2𝜆  𝑟  𝐸  𝐼     𝐸  𝐶1 1 2 3 

+ 𝑟𝛽𝐸 𝐶   2  2  + 𝐸 𝐵2 + 𝐸 𝐵2 + 𝑟𝐸 𝐶2   
2 

− 2𝜆  𝛽𝛼𝑟  𝐸  𝐼      𝐸  𝐶   𝐸  𝐵1 2 3 
− 𝜆 𝐸 𝐼    

2 
𝐸  𝐵1 2 3 1 

2 

2 
− 𝜆 𝐸 𝐼    

− 2𝜆 𝐸 𝐼 𝐸 𝐵1 𝐸 𝐵2 + 𝐸 𝐵3    
+ 𝐸  𝐵   𝐸 𝐵 123  

2 3 

x 𝛼2(𝐸 𝐵2 + 𝐸 𝐵2 + 𝐸 𝐵2 + 𝛽2𝑟𝐸 𝐶2 + 𝜃𝐸 𝐶2   

− 2𝜆2 𝐸 𝐼 
2

 

x α𝐸 𝐵1 ( 𝐸 𝐵2 + 𝐸 𝐵3 + α𝐸 𝐵2 𝐸 𝐵3   

+ 𝛽2𝑟𝜃𝐸  𝐶1   𝐸 𝐶2 (116) 

where𝐸 𝐶2 , are the second moment of the vacation 
time, 𝐸 𝐼 𝐼 − 1 is  the second factorial  moment of  
the batch size of arriving customers. Then if we 
substitute the values 𝑁′ 1 , 𝑁′′ 1 , 𝐷′ 1 , 𝐷′′ 1 from 

Then,         if         we         substitute         the         values 
𝑁′  1  ,  𝑁′′   1  , 𝐷′  1  , 𝐷′′   1  from  equations  (120) to 
(123) into equations (112), we obtain Lq in the 
closed form. 

Case 2: The service and vacation times are 
exponential. 

Put 𝑝 = 0, 𝜃 = 0, 𝛼 = 𝛽 = 1 in the main results. The 
most commondistribution for the service and 
vacation times are the exponential distribution. 
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= 2𝜆 𝐸 𝐼 𝜇 𝛾 𝜇 + 𝜇 

1 

1 1 2 3 1 

2 

2 

2 

For this  distribution,  the  exponential  service  
rate𝜇𝑖 > 0 and the exponential vacation rate 

𝛾𝑗 > 0, for 𝑖 = 0,1, 2, 3, …and 𝑗 = 0,1, 2, … then we 

have 

𝑄  = 1 −  𝜌 124  
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Doshi, B.T. (1986). Queueing systems with vacations-a 
𝜆𝐸 𝐼  

𝜌 = 
𝜇1 𝜇2𝜇3𝛾1 

  
(𝜇3𝛾1   𝜇2 + 𝜇1  )
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+𝜇1 𝜇2(𝛾1 + 𝑟𝜇3) 

survey, Queueing Systems, 1: 29-66. 
Gross, C. and C.M. Harris. (1985). The fundamentals of 

queuing theory, Second Edition, John Wiley and 
𝑁′ 1 = 𝜆𝐸 𝐼 𝜇3𝛾1 𝜇2 + 𝜇1  

+ 𝜇1𝜇2   𝛾1 + 𝑟𝜇3 126  

𝑁′′ 1  
2 2

    2   2   2 2 + 𝜇2𝜇2(𝜇2 

Sons, New York, 
Kashyap, B.R.K and M.L. Chaudhry. (1988)An 

introduction to Queueing theory, A and A 
publications, Kingston, Ontario, Canada, 

Keilson, J. and L.D. Servi. (1986). Oscillating random 

+ 𝑟𝛾2)  
3   1 2 1 1    2 3 

walk models for 𝐺𝐼/GI/1 vacation systems with 

+ 𝜆𝐸  𝐼  𝐼 − 1   𝜇1𝜇2𝜇3𝛾1  𝜇3𝛾1  𝜇2  + 𝜇1  + 𝜇1𝜇2(𝛾1 

2  2  

Bernoulli schedules, Journal of Applied Probability. 
23: 790-802. 

+ 𝑟𝜇3) 
2 

− 2𝜆 𝐸 𝐼 𝜇1𝜇2𝜇3𝛾1 
2           

𝜇1+𝜇2 + 𝜇3 
Krishnakumar, B. A. Vijayakumar and D. Arivudainambi 

+ 2𝜆 𝑟𝜇1𝜇2𝜇3𝛾1 𝐸 𝐼    𝜇3(𝜇1 + 𝜇2) (2002). An M/G/1 retrial queueing system with two 
+ 𝜇1𝜇2 127  

𝐷′ 1  
= 𝜇1𝜇2𝜇3𝛾1 

− 𝜆𝐸  𝐼     
(𝜇3𝛾1  𝜇2  + 𝜇1  )

 (128) 
+𝜇1𝜇2(𝛾1 + 𝑟𝜇3) 

𝐷′′ 1  

= −𝜆𝐸 𝐼 𝐼 − 1 𝛾1 𝜇1𝜇2𝜇3 𝜇3𝛾1 𝜇2 + 𝜇1  

+ 𝜇1𝜇2 𝛾1 + 𝑟𝜇3   2           

phase service and preemptive resume, Annals of 
Operations Research, 113: 61 - 79. 

Levi, Y. and U. Yechiali. (1976). An M/M/s queue with 
server vactions, Infor. 14:153-163. 

Madan, K.C.. (2000). On a single server queue with two- 
stage heterogeneous service and binomial schedule 
server vacations, Egyptian Statistical Journal, 40(1): 
39-55. 

Madan, K.C (2001). On a single server vacation queue 
with two-stage hetero geneous service and 
deterministic server vacations, International Journal − 2𝜆 𝑟𝛾1𝜇1𝜇2𝜇3 𝐸 𝐼 𝜇2𝜇3 + 𝜇1𝜇3+𝜇1𝜇2 2 2  2   2 2 + 𝜇2𝜇2 𝛾2 + 𝑟𝜇2   Systems Science, 32(7): 837-844. 

− 2𝜆 𝐸 𝐼 𝜇3 𝛾1 𝜇2 + 𝜇1 

− 2𝜆2 𝐸 𝐼 
2𝛾2𝜇 𝜇 𝜇 𝜇 +𝜇 

1    2      1 3 Madan, K.C. and R.F. Anabosi. (2003). A single server 
queue with two types of service, Bernoulli schedule 

+ 𝜇3 (129) 

Then, if we substitute the values 
𝑁′ 1 , 𝑁′′ 1 , 𝐷′ 1 , 𝐷′′ 1 from equations (126) to 
(129) into equations (97), we obtain 𝐿𝑞 in the closed 

form. 

9. CONCLUSION 

In this paper we have studied a batch arrival, three 
stage heterogeneous service, feedback with  
Bernoulli vacation and optional server vacation. This 
paper clearly analyzes the transient solution, steady 
state results. If the customer is not satisfied with the 
service, again he can join the tail of the queue and get 
the regular service. 
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