Publisher: Kongunadu Arts and Science College, Coimbatore.

ISSN 2349-2694, All Rights Reserved,

https://krjournal.com/index.php/krj/article/view/662

RESEARCH ARTICLE

Assessing riparian floristic diversity in the Gayathripuzha river basin of Palakkad district

ZereenaViji*, Ansiya S, Drisya S, Mridula M, Abhijith H, Abhijith T G Pillai

Department of Botany, NSS College, Nemmara, Palakkad, Kerala, India - 678 508

Abstract

The riparian flora of the Gayathripuzha river of Palakkad district was studied by a series of survey from July2022 to February 2023. The study revealed that about87 species of species belonging to 31 families were identified. The habit wise analysis of the species suggests that 65% of the plants were herbs, 16% shrubs and 8% climbers and 11% creepers. The present study revealed that Asteraceae, Fabaceae and Malvacea were the dominant families. 74 dicot species and 12 monocot species make up the variety of angiosperm plants. The habit wise analysis of the species suggests that 65% of the plants were herbs, 16% shrubs and 8% climbers and 11% creepers. Asteraceae family dominated the vegetation analysed.

Key Words: Riparian Vegetation.

Introduction

The word 'Riparian' is defined as vegetation ecosystem and habits that are associated with water bodies. The Latin term "Ripa," means "belonging to the banks of a river". This area is frequently referred to as riparian flora since it is a zone between transition water upland environments. It is called as gallery forest or stream side forest because the riparian zone, which extends from the beginning to the end of a river, is greatly influenced by the quantity and flow of water in the river channel[1] (Brinson 1990). The riparian zones supply shelter and food for many aquatic animals and the shade that limit stream temperature change. The roots of riparian trees and shrubs helps to hold stream banks in place and prevents erosion. Riparian vegetation also traps sediment and pollutants helping to keep the water clean by their root system. Different latitudes and altitudes can support very difficult riparian communities. The average width of the riparian area may vary from between 5 - 20cm, depending on the species used and the site.

Riparian landscapes are highly threatened ecosystem as they are inherently rare habits occupying a mere one thousand of earth surface [2](Hynes 1970). Studies on riparian vegetation have been carried out all over the world, identifying floristic diversity and the role of riparian forests as nutrient filters in agricultural watersheds. Climate, altitudinal gradients, upland impacts, flood regimes, and geomorphic channel processes all have a significant impact on the ecological richness of riparian corridors [3](Naiman, et al., 1993). Factors such as light levels, habitat productivity, water flow, soil moisture, disturbance patterns, and rates of erosion and sediment deposition vary along rivers, influencing the distribution of riparian species ([4]Naiman and Décamps, 1997; [5]Larsen et al., 2019; [6]Pielech and Czortek, 2021)

Degradation of riparian zones not only affects the riparian area but also the surface and ground water resources along with terrestrial ecosystem. Climate change has strongly reduced the number of native species in these ecosystem puffing many of them at risk of extinction

Materials and Methods Study Area

The research approach involves a taxonomic / vegetational survey of lower stretch of Gayathripuzha River(Fig.1). It is the one of the main tributaries of the second largest river in kerala, the Bharathapuzha river. It passes through Kollengode, Nemmara, Alathur, Padur and

^{*}Correspondence: ZereenaViji, Department of Botany, NSS College, Nemmara, Palakkad, Kerala, India

^{- 678 508,} Email: reenaravi1@rediffmail.com,Ph:9447277885

Pazhayannur before joining the Bharathapuzha at Mayannur. The average rainfall of the area where Gayathripuzha flows is 7348mm.

The main tributaries of Gayathripuzha are Mangalam river, Ayalur river, Vandazhy river, Meenkara river and Chulliyar.We have selected five sites along the Gayathri river to study about its herbeaceous riparian vegetation. These study sites were Pappanchalla and Ootara Vallanghy, Tripallur and Athipotta (Table 1). A series of survey were conducted from July-February. The specimens were collected and the identification of the specimens was made initially with the help of standard floras [7] Bentham & Hooker (1862– 1883),[8] Gamble & Fischer (1915–1936).The collected specimens were deposited in the herbarium of NSS College, Nemmara.

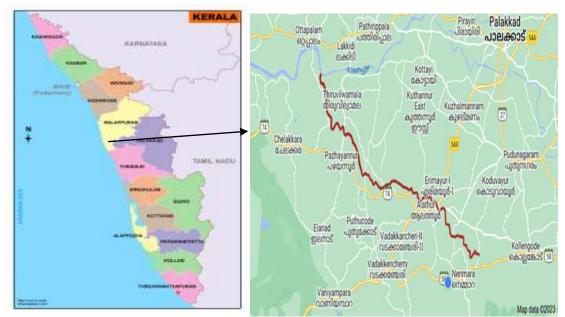


Fig.1 Map showing study area

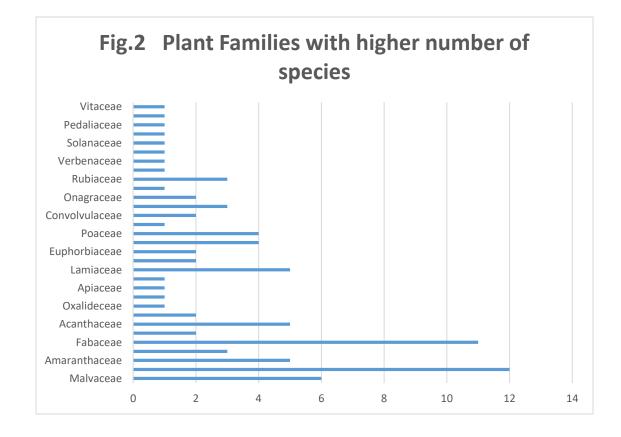
S.No.	Name of Sampling Site	GPS Coordinates
1	Pappanchalla	10.619° N and 76.7746° E.
2	Ootara	10.6094° N and 76.7754° E.
3	Vallanghi	10.5967° N and 76.6052° E.
4	Tripalur	10.6441° N and 76.5668° E.
5	Athipotta	10.37435° N and 76.77619° E.

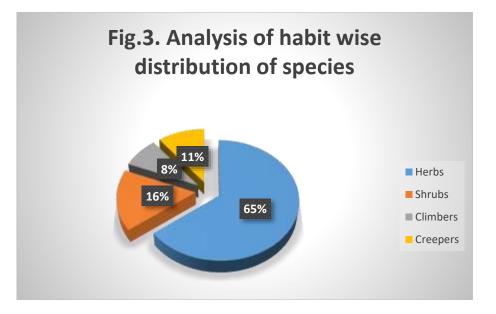
Table 1.	Brief d	lescription	of study area
----------	---------	-------------	---------------

Results and Discussion

During this study of riparian vegetation along the Gayathripuzha river basin, a total of 87 species belonging to 31 families were identified. The Gayathri River's riparian region in the Palakkad district's Chittur thaluk was primarily covered with grasses, shrubs, and herbaceous species. A total of 86 species of angiosperms and 1 species of pteridophytes from 77 genera and 31 families were identified (Table 2.). 74 dicot species and 12 monocot species make up the variety of angiosperm plants. The habit wise analysis of the species suggests that 65% of the plants were herbs, 16% shrubs and 8% climbers and 11% creepers (Fig.3). The ratio of Monocots to Dicots was 1:6.1, Families to Genera is 1: 2.5 Genera to species is1:1.1 Asteraceae family dominated the vegetation analysed (Table3). Among the Dicots the sub class Gamopetalae was represented by 38 species, while Polypetalae had 27 species and Monochlamydeae was represented with 9 species. A total of 25% of the monocot plant species pertain to the Coronarieae series, 66.66% to the Glumaceae series, and 8.33% to the Nodiflorae Series. Coronarieae, Nodiflorae and Glumaceae have a 3:1:8 ratio.

Sl No	Species	Family	Common Name	Habit
1	Abutilon indicum	Malvaceae	Velluram	Shrub
2	Acmella ulignosa	Asteraceae	Palluvedhana chedi	Herb
3	Aerva lanata	Amaranthaceae	Cherula	Herb
4	Ageratum conyzoides	Asteraceae	Murianpacha	Herb
5	Allamanda cathartica	Apocynaceae	Kolambi	Creeping shrub
6	Alternanthera sessilis	Amaranthaceae	Ponamgani	Herb
7	Alysicarpus vaginalis	Fabaceae	Nila orila	Herb
8	Amaranthus spinosus	Amaranthaceae	Mullencheera	Herb
9	Amaranthus viridis	Amaranthaceae	Kuppacheera	Herb
10	Ammannia baccifera	Lythraceae	Kallur Vanchi	Herb
11	Asteracantha longifolia	Acanthaceae	Vayalchulli	Herb
12	Asystasia gangetica	Acanthaceae	Valliupudali	Herb
13	Bacopa monnieri	Plantaginaceae	Brami	Creeping herb
14	Biophytum sensitivum	Oxalidaceae	Mukkootti	Herb
15	Blepharis maderaspatensis	Acanthaceae	Hemakandi	Herb
16	Blumea axillaris	Asteraceae		Herb
17	Calopogonium mucunoides	Fabaceae		Climber
18	Calotropis gigantea	Apocynaceae	Erukku	Shrub
19	Cardiospermum halicacabum	Sapindaceae	Uzhinja	Climber
20	Cassia tora	Fabaceae	Vattathakara	Herb
21	Centella asiatica	Apiaceae	Kudangal	Herbaceous creeper
22	Centrosema plumieri	Fabaceae		Climber
23	Chromolaena odorata	Asteraceae	Communist Pacha	Herb
24	Cleome viscosa	Cleomaceae	Ariavila	Herb
25	Clerodendrum phlomidis	Lamiaceae	Kozhiyappa	Shrub
26	Clinopodium brownei	Lamiaceae		Creeping herb
27	Commelina benghalensis	Commelinaceae	Vazhaplaachi	Herb
28	Conyza japonica	Asteraceae		Herb
29	Corchorus olitorius	Stericulaceae	Chanam	Herb
30	Croton hirtus	Euphorbiaceae		Herb
31	Cyperus iria	Cyperaceae		Herb
32	Cyperus marginatus	Cyperaceae		Herb
33	Cyperus rotundus	Cyperaceae	Perumkora	Herb
34	Desmodium gangeticum	Fabaceae	Orila	Shrub
35	Desmodium paniculatum	Fabaceae		Herb
36	Desmodium triflorum	Fabaceae	Cherupulladi	Herb
37	Desmostachya bipinnata	Poaceae	Dharbapull	Herb
38	Eichhornia crassipes	Pontederiaceae	Kulavazha	Herb


Table 2.Details of enumerated plants, their botanical names, habit, families


39	Eleusine indica	Poaceae		Herb
40	Emilia sonchifolia	Asteraceae	Muyalcheviyan	Herb
41	Eragrotis annulata	Poaceae	in a y arene vi y an	Herb
42	Euphorbia hirta	Euphorbiaceae	Attuvattappala	Herb
43	Gomphrena serrata	Amaranthaceae	Velutha	Herb
44	Heimia salicifolia	Lythraceae	Vaadamalli	Shrub
45	Hemidesmus indicus	Apocynaceae	Naruneendi	Shrub
46	Hyptis suaveolens	Lamiaceae	Nattapoochedi	Herb
47	Indigofera linnaei	Fabaceae	Chempulladi	Herb
48	Ipomoea aquatica	Convolvulaceae	Ballel Kozhuppa	Climber
49	Ipomoea cairica	Convolvulaceae	Udhayamalari	Climber
50	Justicia tranquebariensis	Acanthaceae	o unay uniana in	Sub shrub
51	Kyllinga brevifolia	Cyperaceae		Herb
52	Leucas aspera	Lamiaceae	Thumba	Herb
53	Lindernia antipoda	Linderniaceae		Creeping
54	Lindernia ciliata	Linderniaceae	Chiravanakk	herb Herb
55	Lindernia crustacea	Linderniaceae	Cherukakkapoo	Herb
56	Lindernia crustacea Ludwigia polycarpa		Спегикаккароо	Herb
57	Ludwigia hyssopifolia	onagraceae onagraceae	Neergra	Herb
58	Marsilea quadrifolia	Marsileaceae	Nalilakeera	Herb
59	Mikania micrantha	Asteraceae	Vayara	Climber
60	Mimosa pudica	Fabaceae	Thottalvadi	Creeping shrub
61	Mitracarpus hirtus	Rubiaceae	Thaval	Herb
62	Murdannia semiteres	Commelinaceae	Nilampull	Herb
63	Oldenlandia corymbosa	Rubiaceae	Parppadakam	Herb
64	Ocimum sanctum	Lamiaceae	Tulasi	Herb
65	Pennisetum setaceum	Poaceae	Pothapullu	Herb
66	Persicaria attenuata	Polygonaceae	Tothapuna	Herb
67	Phyla nodiflora	Verbenaceae	Neerthippali	Creeping
				Herb
68	Phyllanthus niruri	Phyllanthaceae	Keezharnelli	Shrub
69	Physalis minima	Solanaceae	Notinotta	Herb
70	Portulaca oleracea	Portulacaceae	Koluppa	Creeping herb
71	Ruellia tuberosa	Acanthaceae	Shivakaratha	Herb
72	Scoparia dulcis	Plantaginaceae	Kallurukki	Herb
73	Senna occidentalis	Fabaceae	Mattan Thakara	Shrub
74	Sesamum indicum	Pedaliaceae	Ellu	Herb
75	Sida acuta	Malvaceae	Malakurumthotti	Shrub
76	Sida cordifolia	Malvaceae	Velluram	Shrub
77	Sida longifolia	Malvaceae		Shrub
78	Spermacoce articularis	Rubiaceae	Kudalchurukki	Herb
79	Sphagneticola trilobata	Asteraceae	Amminipoo	Creeping herb

80	Spilanthes acmella	Asteraceae		Herb
81	Synedrella nodiflora	Asteraceae	Mudiyanpacha	Herb
82	Tephrosia purpurea	Fabaceae	Kozhinjil	Shrub
83	Typha angustifolia	Typhacea	Aanapullu	Herb
84	Urena lobata	Malvaceae	Oorppanam	Shrub
85	Vernonia cinerea	Asteraceae	Poovamkurunnila	Herb
86	Vitis berlandieri	Vitaceae		Climber
87	Xanthium strumarium	Asteraceae	Arishta	Herb

Table 3.Dominant families of the study area

Sl.No	Family	No. of Genera	No. of species
1	Asteraceae	12	12
2	Fabaceae	9	11
3	Malvaceae	3	5
4	Amaranthaceae	4	5
5	Acanthaceae	5	5
6	Lamiaceae	5	5
7	Cyperaceae	2	4
8	Poaceae	4	4
9	Lindernaceae	1	3
10	Apocynaceae	3	3
11	Rubiaceae	3	3

The results of the study showed that Poacea and Cyperaceae families are the largest monocotyledon families, with 4 species each. While the Asteraceae family is the largest dicotyledon family, with 12 species and 12 genera(Fig2). The Asteraceae was the largest contribution (12 genera and 12 species) followed Fabaceae family (9 genera and and Malvaceae (3 genera), 11species). Acanthaceae (5 genera), Lamiaceae(5 genera) and Poaceae (4 genera) and cyperaceae (2 genera and 4 species). Majority of the plants identified in the current study were either moisture-loving or wetland species. The research area's wetland and terrestrial plant diversity indicates to a close relationship between the two ecosystems as well as the river basin's declining size and sedge and grass predominance. Sedges and grasses make up 10% of the flora's diversity along the Gayathripuzha River's banks. According to [9], the Cyperaceae and Poaceae make up the majority of the wetland flora of the district of Kanvakumari, Riparian vegetation studies conducted earlier along the Chalakudy River [10], the Pamba River [11] and the Benin River [12], revealed Euphorbiaceae (including Phyllanthaceae), Fabaceae and Rubiaceae as the dominant families. the present study in Asteraceae, Fabaceae and Malvacea were the dominant families. The prevalence of these families along riverbanks can be attributed to the thriving of species in flooded, highly humid environments, as well as the enhanced ability of leguminous trees to adapt to waterlogged areas. This adaptation is facilitated by the presence of symbiotic nitrogenfixing organisms ([13]; [14]; [15].

The aquatic ecosystem is seriously threatened by the invasive species like Eichhornia crassipes and several Ipomoea species, which would obliterate native species. These weeds are a sign that the local vegetation has been disturbed. The primary cause of the proliferation of these weeds outside of their natural habitat is human involvement. The invasion of weeds is the beginning of ecosystem degradation [16].

Threats and its consequences in riparian basin of Gayathripuzha

Grazing is a major threat to the riparian corridor and was recorded throughout the riparian areas of Gayathripuzha. Grazing of cattle and goats has altered the geomorphic riparian ecosystems of the study area. Grazing disrupted the natural riparian vegetation by the removal of herbaceous plants, causing physical damage to plants and changes in fluvial processes that may eliminate germination sites for woody vegetation.

Construction of check dams is another major threat to riparian ecosystem. These dams disconnect rivers from their riparian zones and wetlands. By slowing down the movement of water it prevent the natural downstream movement of sediments to riparian zones, affecting riparian biodiversity and productivity.

Encroachment for agriculture was observed throughout the riparian system of Gayathripuzha this leads to the degradation of natural riparian vegetation. Sand mining had hampered the riparian ecology by causing the river bank to erode, lowering the river bed, and reducing its ability to hold water. Another important threat to riparian ecosystem is the alien invasive species. Among these, species *Mikania micrantha* is frequently occurring along the riparian system of the study area and it was more widespread and abundant. Invasive exotic species like *Chromolaena odorata*, *Hyptis suaveolens and Alternanthera tenella* cause considerable threat to native species

Conclusion

The Gayatripuzha river basin is a home to 87 plant species belonging to31 families revealing its rich biodiversity and ecological dynamics.It is home to 12 Asteraceae species,11 Fabaceae family members, 5 species from each of the families like Malvaceae , Acanthaceae , Lamiaceae and 4 Poaceaen members and 2 Cyperaceae species.The vegetation profile of the Gaysathripuzha riverbasin shows a dynamic mix of life forms and ecological niches. By addressing the threats , conservation and management strategies for Gayathripuzha river basin can be customized to ensure the region's biodiversity is preserved for the future.

References

- 1. Brinson, M. M. (1990). Riverine forests. *Forested wetlands*.
- 2. HBN, H. (1970). The ecology of running waters. University of Toronto Press, Toronto. *JN Am Benthol Soc, 16,* 109-119
- 3. Naiman, R. J., Decamps, H., & Pollock, M. (1993). The role of riparian corridors in maintaining regional biodiversity. *Ecological applications*, *3*(2), 209-212.
- 4. Naiman, R. J., & Decamps, H. (1997). The ecology of interfaces: riparian zones. *Annual review of Ecology and Systematics*, 28(1), 621-658
- 5. Larsen, S., Bruno, M. C., Vaughan, I. P., & Zolezzi, G. (2019). Testing the River Continuum Concept with geostatistical stream-network models. *Ecological Complexity*, *39*, 100773.
- 6. Pielech, R., & Czortek, P. (2021). Disentangling effects of disturbance severity and frequency: Does bioindication really work? *Ecology and Evolution*, *11*(1), 252-262.
- Bentham, G. & J.D. Hooker (1862– 1883).Genera Plantarum. Vol. 1–3. Reeve and Company, London, 3577 pp

- Gamble, J. S. and C.E.C. Fischer. 1915– 1936. *Flora of the Presidency Madras.* Vols. 1–3. Calcutta: Botanical Survey of India. 2017 pp. (Reprinted 1957; London: Adlard & Co. London).
- 9. Sukumaran, S., & Jeeva, S. (2011). Angiosperm flora from wetlands of Kanyakumari district, Tamilnadu, India. *Check List*, 7(4), 486-495
- 10.Bachan, K.H.A.(2003). Riparian vegetation along the middle and lower zones of the Chalakudy River, Kerala, India.Center for Development Studies, Kerala, 117 pp. <u>http://www.cds.ac.in/krpcds/report/amita.p</u> <u>df</u>
- 11.Paul, J. & K.V. George (2010). Studies on riverine flora of Pamba river basin, Kerala. Downloaded from Nature Proceedings.https://doi.org/10.1038/npre.20 10.5135.1
- 12.Natta, A.K. (2003).Ecological assessment of riparian forests in Benin: Phytodiversity, phytosociology and Spatial Distribution of Tree Species. Ph.D. Thesis. Netherlands: Wageningen University, 215 pp.
- 13.Koponen, P., P. Nygren, D. Sabatier, A. Rousteau & E. Saur (2004). Tree species diversity and forest structure in relation to microtopography in a tropical freshwater swamp forest in French Guiana. Plant Ecology 173(1): 17–32. https://doi.org/10.1023/B:VEGE.000002632 8.98628.b8
- 14.Bognounou, F., A. Thiombiano, P. Savadogo, J.I. Boussim, P.C. Oden & S. Guinko (2009). Woody vegetation structure and composition at four sites along a latitudinal gradient in Western Burkina Faso. *Bois et Forets des Tropiques 30*0(2): 30–44. <u>http://bft.cirad.fr/_cd/</u> BFT 300_29-44.pdf
- 15.Sambaré, O., F. Bognounou, R. Wittig & A. Thiombiano (2011). Woody species composition, diversity and structure of riparian forests of four watercourses types in Burkina Faso. Journal of Forestry Research22 (2): 145–158. <u>https://doi.org/10.1007/</u>s11676-011-0143-2
- 16.Sujana, K. A., & Sivaperuman, C. (2008). Preliminary studies on flora of Kole wetlands, Thrissur, Kerala.

About The License

CON Attribution 4.0 International (CC BY 4.0

The text of this article is licensed under a Creative Commons Attribution 4.0 International