ON GENERALIZED GRILL CONTINUOUSFUNCTIONS

${ }^{1}$ Department of Mathematics, Nirmala College for Women, Coimbatore, TN, India
${ }^{2}$ Department of Mathematics, KSG College, Coimbatore, TN, India.
*E-mail: iiscsathish@yahoo.co.in

Abstract

In this paper, We introduce a new class of continuous functions namely g-G-continuousfunctions, g-G-irresolute and study some of their properties in topological spaces.

Keywords: g-G-continuous, g-G-irresolute

1. INTRODUCTION

In 1970, Levine first introduced the concept of generalized closed (briefly, g-closed) sets were defined and investigated. The idea of grill on a topological space was first introduced by Choquet in 1947. It is observed from literature that the concept of grills is a powerful supporting tool, like nets and filters, in dealing with many topological concept quite effectively. In 2007, Roy and Mukherjee defined and studied a typical topology associated rather naturally to the existing topology and a grill on a given topological space. The aim of this paper is to introduce g-G-continuous and g-G-irresolute and investigate the relations of g - G-continuous functions between such functions.

2. PRELIMINARIES

Throughout this paper, (X, τ) (or X) represent a topological space on which no separation axioms are assumed unless otherwise mentioned. For a subset A of a space $X, \operatorname{cl}(A)$ and $\operatorname{int}(A)$ denote the closure of A and the interior of A, respectively. The power set of X will be denoted by $\wp(X)$. A collection G of a nonempty subsets of a space X is called a grill (Andrijevic, 1986) on X if
(1) $A \in G$ and $A \subseteq B \Rightarrow B \in G$,
(2) $A, B \subseteq X$ and $A \cup B \in G \Rightarrow A \in G$ or $B \in$
G.

For any point x of a topological space (X, τ), $\tau(\mathrm{x})$ denote the collection of all open neighbourhoods of x.

We recall the following results which are useful in the sequel.
2.1 Definition (Arya and Nour, 1990). Let (X, τ) be a topological space and G be a grill on X. The mapping $\Phi: \wp(\mathrm{X}) \rightarrow \wp(\mathrm{X})$, denoted by $\Phi_{G}(\mathrm{~A}, \tau)$ for $\mathrm{A} \in$ $\wp(\mathrm{X})$ or simply $\Phi(\mathrm{A})$ called the operator associated with the grill G and the topology τ and is defined by
$\Phi_{G}(\mathrm{~A})=\{\mathrm{x} \in \mathrm{X} \mid \mathrm{A} \cap \mathrm{U} \in \mathrm{G}, \forall \mathrm{U} \in \tau(\mathrm{x})\}$.
Let G be a grill on a space X. Then a map $\Psi: \wp(X) \rightarrow$ $\wp(X)$ is defined by $\Psi(A)=A \cup \Phi(A)$, for all $A \in$ $\wp(X)$. The map Ψ satisfies Kuratowski closure axioms. Corresponding to a grill G on a topological space (X, τ), there exists a unique topology τ_{G} on X given by
$\tau_{G}=\{U \subset X \mid \Psi(X-U)=X-U\}$, where for any $A \subset X$, $\Psi(\mathrm{A})=\mathrm{A} \cup \Phi(\mathrm{A})=\tau_{\mathrm{G}}-\mathrm{cl}(\mathrm{A})$. For any grill G on a topological space by $(\mathrm{X}, \tau, \mathrm{G})$.
2.2. Definition A subset A of a topological space (X, τ) is called

1) a pre-open set (Mashhour et al., 2009) if $\mathrm{A} \subseteq$ int $(\operatorname{cl}(\mathrm{A}))$ and a pre-closed set if $\operatorname{cl}(\operatorname{int}(\mathrm{A})) \subseteq \mathrm{A}$.
2) a semi-open set (Levine, 1963) if $\mathrm{A} \subseteq \operatorname{cl}(\operatorname{int}(\mathrm{A}))$ and a semi-closed set if intl $(\operatorname{cl}(\mathrm{A})) \subseteq A$.
3) an α-open set (Njastad, 1965) if $\mathrm{A} \subseteq$ $\operatorname{int}(\operatorname{cl}(\operatorname{int}(\mathrm{A}))$) and an α - closed set (Maki et al., 1993) if $\operatorname{cl}(\operatorname{int}(\operatorname{cl}(A))) \subseteq A$.
4) a semi-preopen set (Andrijevic, 1986) if $\mathrm{A} \subseteq$ $\operatorname{cl}(\operatorname{int}(\mathrm{cl}(\mathrm{A})))$ and a semi-preclosed set (Arokiarani et al., 1999) if $(\operatorname{int}(\mathrm{cl}(\mathrm{A}))) \subseteq \mathrm{A}$.

2.3. Definition A subset A of a topological space (X, τ) is called

1) a generalized closed set (briefly g-closed) (Levine, 1970) if $\operatorname{cl}(\mathrm{A}) \subseteq \mathrm{U}$ whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is open in (X, τ).
2) a semi-generalized closed set (briefly sg-closed) (Bhattacharya and Lahiri, 1987) if $\operatorname{scl}(\mathrm{A}) \subseteq \mathrm{U}$ whenever $A \subseteq U$ and U is semi-open in (X, τ).
3) a generalized semi-closed set (briefly gs-closed) (Arya and Nour, 1990) if $\operatorname{scl}(\mathrm{A}) \subseteq \mathrm{U}$ whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is open in (X, τ).
4) a generalized α-closed set (briefly g α-closed) (Maki et al., 1993) if $\alpha \mathrm{cl}(\mathrm{A}) \subseteq \mathrm{U}$ whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is α-open in (X, τ).
5) an α-generalized closed set (briefly α g-closed) (Maki et al., 1994) if $\alpha \operatorname{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ).
6) a generalized semi-preclosed set (briefly gspclosed) (Dontchev, 1995) if $\operatorname{spcl}(\mathrm{A}) \subseteq \mathrm{U}$ whenever A $\subseteq U$ and U is open in (X, τ).
7) a generalized preclosed set (briefly gp-closed) (Maki et al., 1996) if $\operatorname{pcl}(\mathrm{A}) \subseteq \mathrm{U}$ whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is open in (X, τ).
2.4. Definition A function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ iscalled
8) g-continuous (Balachandran et al., 1991) if f ${ }^{1}(\mathrm{~V})$ is g-closed in (X, τ) for every closed set V in (Y, σ),
9) gp-continuous (Arokiarani et al., 1999) if $\mathrm{f}^{-1}(\mathrm{~V})$ is gp-closed in (X, τ) for every closed set V in (Y, σ),
10) gsp-continuous (Dontchev, 1995) if $f^{-1}(V)$ is gspclosed in (X, τ) for every closed set V in (Y, σ),
11) $g \alpha$-continuous (Mashhour et al., 1982) if $\mathrm{f}^{-1}(\mathrm{~V})$ is g α-closed in (X, τ) for every closed set V in (Y , σ),
12) gs-continuous (Sundaram et al., 1992) if $\mathrm{f}^{-1}(\mathrm{~V})$ is gs-closed in (X, τ) for every closed set V in (Y, σ),
13) αg-continuous (Mashhour et al., 1982) if $f^{-1}(V)$ is α g-closed in (X, τ) for every closed set V in (Y, σ),
2.4. Theorem. (Arya and Nour, 1990) 1) If G_{1} and G_{2} are two grills on a space X with $G_{1} \subset G_{2}$, then $\tau_{G 1} \subset$ $\tau_{\mathrm{G} 2}$.
14) If G is a grill on a space X and $B \notin G$, then Bis closed in ($\mathrm{X}, \tau, \mathrm{G}$).
15) For any sunset A of a space X and any grill G on X, $\Phi(\mathrm{A})$ is τ_{G}-closed.
2.5. Theorem (Arya and Nour, 1990) Let (X, τ) be a topological space and G be any grill on X . Then
16) $\mathrm{A} \subseteq \mathrm{B}(\subseteq \mathrm{X}) \Rightarrow \Phi(\mathrm{A}) \subseteq \Phi(\mathrm{B})$;
17) $A \subseteq X$ and $A \notin G \Rightarrow \Phi(A)=\phi$;
18) $\Phi(\Phi(\mathrm{A})) \subseteq \Phi(\mathrm{A})=\operatorname{cl}(\Phi(\mathrm{A})) \subseteq \mathrm{cl}(\mathrm{A})$, for any $\mathrm{A} \subseteq \mathrm{X}$;
19) $\Phi(A \cup B)=\Phi(A) \cup \Phi(B)$ for any $A, B \subseteq X$;
20) $\mathrm{A} \subseteq \Phi(\mathrm{A}) \Rightarrow \operatorname{cl}(\mathrm{A})=\tau_{\mathrm{G}}-\operatorname{cl}(\mathrm{A})=\operatorname{cl}(\Phi(\mathrm{A}))=\Phi(\mathrm{A})$;
21) $U \in \tau$ and $\tau \backslash\{\phi\} \subseteq G \Rightarrow U \subseteq \Phi(U)$;
22) If $U \in \tau$ then $U \cap \Phi(A)=U \cap \Phi(U \cap A)$, for any $A \subseteq$ X.
2.6. Theorem Let (X, τ) be a topological space and Gbe any grill on X . Then, for any $\mathrm{A}, \mathrm{B} \subseteq \mathrm{X}$.
23) $A \subseteq \Psi(A)$ (Arya and Nour, 1990);
24) $\Psi(\phi)=\phi$ (Arya and Nour, 1990);
25) $\Psi(A \cup B)=\Psi(A) \cup \Psi(B)$ (Arya and Nour, 1990);
26) $\Psi(\Psi(A))=\Psi(A)$ (Arya and Nour, 1990);
27) $\operatorname{Int}(A) \subset \operatorname{int}(\Psi(A))$;
28) $\operatorname{Int}(\Psi(A \cap B)) \subset \operatorname{Int}(\Psi(A))$;
29) $\operatorname{Int}(\Psi(A \cap B)) \subset \operatorname{Int}(\Psi(B))$;
30) $\operatorname{Int}(\Psi(A)) \subset \Psi(A)$;
31) $A \subseteq B \Rightarrow \Psi(A) \subseteq \Psi(B)$.

3. g - G-CONTINUOUS FUNCTIONS

3.1. Definition A subset A of a topological space (X, τ, G) is called a generalized grill closed
(briefly g - G - closed) set if $\Psi(A) \subseteq U$ whenever $A \subseteq$ U and U is open in X.
3.2. Definition A function $\mathrm{f}:(\mathrm{X}, \tau, \mathrm{G}) \rightarrow(\mathrm{Y}, \sigma)$ is said to be g-G-continuous, if the inverse
image of every open set in (Y, σ) is g-G-open in (X, τ, G).
3.3. Definition A function $\mathrm{f}:(\mathrm{X}, \tau, \mathrm{G}) \rightarrow(\mathrm{Y}, \sigma, \mathrm{H})$ is said to be g-G-irresolute, if $f^{-1}(A)$ is
g-G-open in (X, τ, G) for every g-H-open set in (Y, σ, H).
3.4. Theorem Every g-continuous function is g-Gcontinuous but not conversely.
Proof. Let $\mathrm{f}:(\mathrm{X}, \tau, \mathrm{G}) \rightarrow(\mathrm{Y}, \sigma)$ be an g -continuous. Let V be any open set in (Y, σ). Then $\mathrm{f}^{-1}(\mathrm{~V})$ is g-open in ($\mathrm{X}, \tau, \mathrm{G}$). Since every g closed set is $\mathrm{g}-\mathrm{G}$ - closed set, $\mathrm{f}^{-1}(\mathrm{~V})$ is g-G-open in (X, τ, G).Therefore is g-Gcontinuous.
3.5. Example Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \tau=\{\phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a} . \mathrm{b}\}$, $X\}, \sigma=\{\phi,\{a\}, X\}$ and $G=\{\{a\}$,
$\{\mathrm{a}, \mathrm{b}\}, \mathrm{X}\}$. Define the function $\mathrm{f}:(\mathrm{X}, \tau, \mathrm{G}) \rightarrow(\mathrm{Y}, \sigma)$ by $\mathrm{f}(\mathrm{a})=\mathrm{b}, \mathrm{f}(\mathrm{b})=\mathrm{a}, \mathrm{f}(\mathrm{c})=\mathrm{c}$. Then f is g -G-continuous but not g-continuous. Since for the g-G-open set $V=\{a\}$ in $(\mathrm{Y}, \sigma), \mathrm{f}^{-1}(\mathrm{~V})$ is g -G-closed but not g-closed in (X, τ, G).
3.6. Theorem Every gs-continuous function is g-Gcontinuous but not conversely.

Proof. Let $\mathrm{f}:(\mathrm{X}, \tau, \mathrm{G}) \rightarrow(\mathrm{Y}, \sigma)$ be an g -continuous. Let V be any open set in (Y, σ). Then $\mathrm{f}^{-1}(\mathrm{~V})$ is gs-open in ($\mathrm{X}, \tau, \mathrm{G}$). Since every gs closed set is $g-G$ - closed set, $\mathrm{f}^{1}(\mathrm{~V})$ is g-G-open in ($\mathrm{X}, \tau, \mathrm{G}$).Therefore is g-Gcontinuous.
3.7. Example Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \tau=\{\phi,\{\mathrm{a}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a} . \mathrm{c}\}, \mathrm{X}\}$, $\sigma=\{\phi,\{a\},\{a, c\} X\}$ and $G=$
$\{\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\}, \mathrm{X}\}$ Define the function $\mathrm{f}:(\mathrm{X}, \tau, \mathrm{G}) \rightarrow(\mathrm{Y}, \sigma)$ by $f(a)=a, f(b)=c, f(c)=b$. Then f is g-G-continuous but not gs-continuous. Since for the g-G-open set $V=$ $\{\mathrm{a}\}$ in $(\mathrm{Y}, \sigma), \mathrm{f}^{-1}(\mathrm{~V})$ is g - G closed but not gs-closed in ($\mathrm{X}, \tau, \mathrm{G}$).
3.8. Theorem Every sg-continuous function is g-Gcontinuous but not conversely.

Proof. Let $\mathrm{f}:(\mathrm{X}, \tau, \mathrm{G}) \rightarrow(\mathrm{Y}, \sigma)$ be an g -continuous. Let V be any open set in (Y, σ). Then $f^{-1}(V)$ is sg-open in ($\mathrm{X}, \tau, \mathrm{G}$). Since every sg closed set is $\mathrm{g}-\mathrm{G}$ - closed set, $\mathrm{f}^{-1}(\mathrm{~V})$ is g-G-open in ($\mathrm{X}, \tau, \mathrm{G}$).Therefore is g-Gcontinuous.
3.9. Example Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \tau=\sigma=\{\phi,\{\mathrm{a}\},\{\mathrm{a}, \mathrm{b}\}, \mathrm{X}\}$ and $G=\{\{b\},\{b, c\}, X\}$. Define the
function $\mathrm{f}:(\mathrm{X}, \tau, \mathrm{G}) \rightarrow(\mathrm{Y}, \sigma)$ by $\mathrm{f}(\mathrm{a})=\mathrm{a}, \mathrm{f}(\mathrm{b})=\mathrm{b}, \mathrm{f}(\mathrm{c})=$ c. Then f is g -G-continuous but not g -continuous. Since for the g-G-open set $V=\{a\}$ in $(Y, \sigma), f^{-1}(V)$ is gG closed but not sg-closed in ($\mathrm{X}, \tau, \mathrm{G}$).
3.10. Theorem Every αg-continuous function is g-Gcontinuous but not conversely.

Proof. Let $\mathrm{f}:(\mathrm{X}, \tau, \mathrm{G}) \rightarrow(\mathrm{Y}, \sigma)$ be an g -continuous. Let V be any open set in (Y, σ). Then $\mathrm{f}^{-1}(\mathrm{~V})$ is $\alpha \mathrm{g}$-open in ($\mathrm{X}, \tau, \mathrm{G}$). Since every $\alpha \mathrm{g}$-closed set is $\mathrm{g}-\mathrm{G}$ - closed set, $f^{-1}(V)$ is g-G-open in (X, τ, G).Therefore is g - G continuous.
3.11. Example Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \tau=\{\phi,\{\mathrm{a}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{c}\}, \mathrm{X}\}$, $\sigma=\{\phi,\{b\},\{b, c\} X\}$ and $G=$
$\{\{b\},\{a, b\}, X\}$. Define the function $f:(X, \tau, G) \rightarrow(Y, \sigma)$ by $f(a)=b, f(b)=c, f(c)=a$. Then f is g - G-continuous but not α-continuous. Since for the g-G-open set $V=$ $\{\mathrm{b}\}$ in $(\mathrm{Y}, \sigma), \mathrm{f}^{-1}(\mathrm{~V})$ is g - G closed but not $\alpha \mathrm{g}$-closed in ($\mathrm{X}, \tau, \mathrm{G}$).
3.12. Theorem Every g α-continuous function is g-Gcontinuous but not conversely.
Proof. Let $\mathrm{f}:(\mathrm{X}, \tau, \mathrm{G}) \rightarrow(\mathrm{Y}, \sigma)$ be an g-continuous. Let V be any open set in (Y, σ). Then $f^{-1}(V)$ is $g \alpha$-open in ($\mathrm{X}, \tau, \mathrm{G}$). Since every $g \alpha$-closed set is $g-G$ - closed set, $f^{-1}(V)$ is g-G-open in ($\mathrm{X}, \tau, \mathrm{G}$).Therefore is g -Gcontinuous.
3.13. Example Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \tau=\sigma=\{\{\mathrm{b}\}, \mathrm{X}\}$ and $\mathrm{G}=$ $\{\{\mathrm{a}\},\{\mathrm{a}, \mathrm{b}\}, \mathrm{X}\}$. Define the function $\mathrm{f}:(\mathrm{X}, \tau, \mathrm{G}) \rightarrow(\mathrm{Y}, \sigma)$
by $f(a)=c, f(b)=a, f(c)=a$. Then f is $g-G$-continuous but not $g \alpha$-continuous. Since for the g-G-open set $V=$ $\{b\}$ in $(Y, \sigma), f^{-1}(V)$ is $g-G$ closed but not $g \alpha$-closed in ($\mathrm{X}, \tau, \mathrm{G}$).
3.14. Theorem Every gp-continuous function is g-Gcontinuous but not conversely.
Proof. Let $\mathrm{f}:(\mathrm{X}, \tau, \mathrm{G}) \rightarrow(\mathrm{Y}, \sigma)$ be an g -continuous. Let V be any open set in (Y, σ). Then $\mathrm{f}^{-1}(\mathrm{~V})$ is gp -open in ($\mathrm{X}, \tau, \mathrm{G}$). Since every gp-closed set is $\mathrm{g}-\mathrm{G}$ - closed set, $f^{-1}(V)$ is g-G-open in (X, τ, G).Therefore is $g-G-$ continuous.
3.15. Example Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \tau=\{\phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\}, \mathrm{X}\}$, $\sigma=\{\phi,\{a\},\{a, b\}, X\}$ and $G=$
$\{\{a\},\{a, c\}, X\}$. Define the function $f:(X, \tau, G) \rightarrow(Y, \sigma)$ by $f(a)=b, f(b)=a, f(c)=c$. Then f is g - G-continuous but not gp-continuous. Since for the g-G-open set $V=$ $\{\mathrm{a}\}$ in $(\mathrm{Y}, \sigma), \mathrm{f}^{-1}(\mathrm{~V})$ is $\mathrm{g}-\mathrm{G}$ closed but not gp -closed in ($\mathrm{X}, \tau, \mathrm{G}$).
3.16. Theorem Every gsp-continuous function is g-Gcontinuous but not conversely.

Proof. Let $\mathrm{f}:(\mathrm{X}, \tau, \mathrm{G}) \rightarrow(\mathrm{Y}, \sigma)$ be an g-continuous. Let V be any open set in (Y, σ). Then $f^{-1}(V)$ is gsp -open in ($\mathrm{X}, \tau, \mathrm{G}$). Since every gsp-closed set is $\mathrm{g}-\mathrm{G}$ - closed set, $\mathrm{f}^{-1}(\mathrm{~V})$ is g-G-open in ($\mathrm{X}, \tau, \mathrm{G}$).Therefore is g -Gcontinuous.
3.17. Example Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \tau=\{\phi,\{\mathrm{a}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{c}\}$, $X\}, \sigma=\{\phi,\{a\},\{a, b\}, X\}$ and $G=$
$\{\{a\},\{a, b\}, X\}$. Define the function $f:(X, \tau, G) \rightarrow(Y, \sigma)$ by $f(a)=a, f(b)=c, f(c)=b$. Then f is g - G-continuous but not gsp-continuous. Since for the g-G-open set V $=\{\mathrm{a}\}$ in $(\mathrm{Y}, \sigma), \mathrm{f}^{-1}(\mathrm{~V})$ is $\mathrm{g}-\mathrm{G}$ closed but not gsp -closed in $(\mathrm{X}, \tau, \mathrm{G})$.
3.18. Theorem Let $\mathrm{f}:(\mathrm{X}, \tau, \mathrm{G}) \rightarrow(\mathrm{Y}, \sigma)$ is g-Gcontinuous and g : $(Y, \tau) \rightarrow(Z, \eta)$ is continuous then g of : $(X, \tau, G) \rightarrow(Z, \eta)$ isg-G-continuous.

Proof. Let g be a continuous function and V be any open in (Z, η), then $f^{-1}(V)$ is open in (Y, σ). Since f is $g-$ G-continuous, $f^{-1}\left(g^{-1}(V)\right)=(g \text { of })^{-1}(V)$ is g-G-open in ($\mathrm{X}, \tau, \mathrm{G}$).Hence g of is g -G-continuous.
3.19. Theorem Let $\mathrm{f}:(\mathrm{X}, \tau, \mathrm{G}) \rightarrow(\mathrm{Y}, \sigma, \mathrm{H})$ and $\mathrm{g}:(\mathrm{Y}, \tau$, $\mathrm{H}) \rightarrow(\mathrm{Z}, \eta, \mathrm{L})$ are g -G-irresolute then g o $\mathrm{f}:(\mathrm{X}, \tau, \mathrm{G})$ $\rightarrow(Z, \eta, L)$ is g-G-irresolute.

Proof. Let g be a g-G-irresolute and V be any g-Lopen in (Z, η, L), then $f^{-1}(V)$ is g-G-open in (Y, $\left.\sigma, H\right)$.
Since f is g-G-irresolute, $f^{-1}\left(g^{-1}(V)\right)=(g \text { of })^{-1}(V)$ is g -G-irresolute in
($\mathrm{X}, \tau, \mathrm{G}$).Hence g o f is g -Girresolute.
3.20. Remarks
$\mathrm{g} \alpha$ - continuous $\rightarrow \alpha \mathrm{g}$ - continuous $\rightarrow \mathrm{gp}$ - continuous

REFERENCES

Andrijevic, D . (1986). Semi-preopen sets, Mat. Vesnik, 38(1): 24-32.

Arokiarani, L., K.Balachandran, and J. Dontchev. (1999). Some characterization of gp-irresolute and gp-continuous maps betweentopological spaces. 20: 93-104.

Arya, S.P and T. Nour (1990). Characterizations of snormal spaces, Indian J.Pure.Appl. Math. 21(8): 717-719.

Balachandran, K., P.Sundaram, and H.Maki (1991). On generalized continuous maps in topological Spaces. Mem Fac.Sci.kochi Univ. Ser A.Math, 12:5-13.

Bhattacharya, P and B.K. Lahiri, (1987). Semigeneralized closed sets in topology, Indian J.Math. 29(3) 375-382.

Choquet, G . (1947). Sur less notions de filter et grille, comptes Rendus . Acad. Sci. Paris. 224 ,171-173.

Dontchev,J. (1995). On generalizing semi-preopen sets, Mem.Fac.Sci.Kochi Univ.Ser.A, Math. 6 3548.

Levine, N. (1963). Semi-open sets and semicontinuity in topological Spaces, Amer.Math.Monthly, 7036-41.

Levine, N. (1970). Generalized closed sets in topology, Rend. Circ. Math. Palermo, 19(2): 8996.

Maki, H., R.Devi and K.Balachandran (1994). Associated topologies of generalized α-closed sets and α-generalized closed sets, Mem.Fac.Sci.Kochi Univ.Ser.A, Math.1551-63.

Maki, H., R.Devi and K.Balachandran (1993). Generalized α-closed sets in topology, Bull. Fukuoka Univ.Ed.Part III. 4213-21.

Maki, H., J.Uniehara and T.Noiri (1996). Every topological Spaces is pre-T $\mathrm{T}_{1 / 2}$, Mem.Fac.Sci.Kochi Univ.Ser.A, Math.1733-42.

Mashhour, A.S., M.E. Abd El-Monsef and S.N. El-Deeb, On Pre-Continuous and weak Pre-continuous mappings. Proc. Math. and Phys. Soc. Egypt. 53(1982), 47-53.

Njastad, O. (1965).On some classes of nearly open sets, Pacific J.Math., 15961-970.

Roy, B. and M.N. Mukherjee (2007). On a typical topology induced by a grill, Soochow J. Math., 33(4) 771-786.

Sundaram, P., H.Maki, and K.Balachandran (1992). Semi-generlized continuous maps and semi- $\mathrm{T}_{1 / 2}$ spaces, Bull. Fukuoka Univ.Ser.A Math. 13, 3340.

