

RESEARCH ARTICLE

SOFT $\alpha\omega$ - NORMAL AND REGULAR SPACES IN SOFT IDEAL TOPOLOGICAL SPACESN. Chandramathi¹, V. Kiruthika^{2*} and P. Nithya³¹Assistant Professor, Department of Mathematics, Government Arts College, Udumalpet, Tamilnadu, India.
drmathimaths@gmail.com²Research Scholar, Department of Mathematics, Government Arts College, Udumalpet, Tamilnadu, India.
kiruthi.v3@gmail.com³Research Scholar, Department of Mathematics, Government Arts College, Udumalpet, Tamilnadu, India.
nithyapalanisamy2599@gmail.com* V. Kiruthika² E-mail : . kiruthi.v3@gmail.com**Abstract**

In this paper, we introduce a soft $\alpha\omega$ - Normal and Regular spaces in soft ideal topological spaces. Furthermore, we introduce to Enlightenment and Edification of some properties, theorems and examples, which is the of the concept of soft mappings in soft ideal topological spaces.

KEYWORDS

Soft set, soft ideal topological space, Soft $\alpha\omega$ -Closed set, Soft $\alpha\omega$ - Hausdorff space, Soft $\alpha\omega$ - Normal space, Soft $\alpha\omega$ - Regular space.

Introduction**1. Introduction**

The concept of soft set theory was introduced by Molodstov [5] and the concept of soft ideal theory, soft local function was introduced by A.Kandil,et.al [1]. The concepts of soft $\alpha\omega$ -closed sets was introduced by S.Jafari,et.al [12]. The concepts of soft $\alpha\omega$ - Closed sets was introduced by N.Chandramathi and V.Kiruthika [7]. The concepts of Soft Hausdorff space, Soft Normal space and Soft Regular Space was introduced by M. Shabir and M. Naz [6].

2. Preliminaries

Let U be an initial universe and E be a set of parameters. Let $P(U)$ denote the power set of U .

2.1 Definition [5]

Let D be a non-empty subset of E and a soft set over U is a parameterized family of subsets of an initial universe U . For a particular $e \in E$, $F(e)$ may be considered the set of e -approximate elements of the soft set (F, E) and if $e \notin E$, then $F(e) = \emptyset$, that is, $(F, E) = \{f(e): e \in D \subseteq E, f: E \rightarrow P(U)\}$ is called a soft set over U . Then the family of all these soft sets denoted by $SS(U)_E$.

2.2 Definition[5]

Let \mathcal{C}_s be the collection of soft sets over U . Then \mathcal{C}_s is said to be a soft topology on U if satisfies the following axioms:

- $(\emptyset, E), (U, E)$ belongs to \mathcal{C}_s .

- The union of any number of soft sets in \mathcal{C}_s belongs to \mathcal{C}_s .
- The intersection of two number of soft sets in \mathcal{C}_s belongs to \mathcal{C}_s .

The triplet (U, \mathcal{C}_s, E) is said to be soft topological space and we note that the member of \mathcal{C}_s are said to be \mathcal{C}_s -soft open sets.

2.3 Definition [1]

Let \bar{I} be a non-null collection of soft sets over an initial universe U with the same set of parameter E . Then \bar{I} containing $SS(U)_E$ is called as a soft Ideal on U with same set E if,

- $(F, E) \in \bar{I}$ and $(G, E) \in \bar{I}$ then $(F, E) \cup (G, E) \in \bar{I}$
- $(F, E) \in \bar{I}$ and $(G, E) \subseteq (F, E)$ then $(G, E) \in \bar{I}$

2.4 Definition[11]

Let (U, \mathcal{C}_s, E) be a soft topological space and $x, y \in U$ such that $x \neq y$. Then (U, \mathcal{C}_s, E) is called a soft Hausdorff space, if there exist soft open soft sets (F, E) and (G, E) such that $x \in (F, E)$, $y \in (G, E)$ and $(F, E) \cap (G, E) = (\emptyset, E)$.

2.5 Definition [11]

Let $(U, \mathcal{C}_s, E, \bar{I})$ be a soft ideal topological space and $x, y \in U$ such that $x \neq y$. Then $(U, \mathcal{C}_s, E, \bar{I})$ is called a soft - \bar{I} - Hausdorff space, if there exist soft \bar{I} - open soft sets (F, E) and (G, E) such that $x \in (F, E)$, $y \in (G, E)$ and $(F, E) \cap (G, E) = (\emptyset, E)$.

2.6 Definition[2]

Let (U, \mathcal{C}_s, E) be a soft topological space over U ; (H, E) and (K, E) be two disjoint soft closed sets over U , if there exist soft open sets (F, E) and (G, E) such that $(H, E) \subseteq (F, E)$, $(K, E) \subseteq (G, E)$ and $(F, E) \cap (G, E) = (\emptyset, E)$, then (U, \mathcal{C}_s, E) is called a soft normal space.

2.7 Definition[2]

Let $(U, \mathcal{C}_s, E, \bar{I})$ be a soft ideal topological space over U ; (H, E) and (K, E) be two disjoint soft closed sets over U , if there exist soft \bar{I} - open sets (F, E) and (G, E) such that $(H, E) \subseteq (F, E)$, $(K, E) \subseteq (G, E)$ and $(F, E) \cap (G, E) = (\emptyset, E)$, then $(U, \mathcal{C}_s, E, \bar{I})$ is called a soft \bar{I} - normal space.

2.8 Definition[2]

Let (U, \mathcal{C}_s, E) be a soft topological space over U and let (H, E) be a soft closed in U and $x \in X$ such that $x \notin (H, E)$, if there exist soft open sets (F_1, E) and (F_2, E) such that $x \in (F_1, E)$, $(G, E) \subseteq (F_2, E)$ and $(F_1, E) \cap (F_2, E) = (\emptyset, E)$, then (U, \mathcal{C}_s, E) is called a soft regular space.

2.9 Definition [2]

Let $(U, \mathcal{C}_s, E, \bar{I})$ be a soft ideal topological space over U and let (H, E) be a soft closed in U and $x \in X$ such that $x \notin (H, E)$, if there exist soft \bar{I} - open sets (F_1, E) and (F_2, E) such that $x \in (F_1, E)$, $(G, E) \subseteq (F_2, E)$ and $(F_1, E) \cap (F_2, E) = (\emptyset, E)$, then $(U, \mathcal{C}_s, E, \bar{I})$ is called a soft \bar{I} - regular space.

3. SOFT $\alpha\omega\bar{I}_s$ - HAUSDORFF SPACE IN SOFT IDEAL TOPOLOGICAL SPACES

In this section we introduce and study about a new Hausdorff space is known as soft $\alpha\omega\bar{I}_s$ - Hausdorff space in Soft ideal topological spaces.

3.1 Definition

Let $(V, \mathcal{C}_s, Q, \bar{I}_s)$ be a soft ideal topological space and $(x, Q), (y, Q) \in (V, Q)$ such that $(x, Q) \neq (y, Q)$. Then $(V, \mathcal{C}_s, Q, \bar{I}_s)$ is called a soft $\alpha\omega\bar{I}_s$ - Hausdorff space, if there exist soft $\alpha\omega\bar{I}_s$ - open sets (F, Q) and (G, Q) such that $(x, Q) \in (\dot{X}, Q)$, $(y, Q) \in (\dot{Y}, Q)$ and $(\dot{X}, Q) \cap (\dot{Y}, Q) = (\emptyset, Q)$.

3.2 Example

Let $V = \{\alpha, \beta, \gamma, \delta\}$,

$Q = \{\sigma\}$,

$\mathcal{C}_s = \{(\emptyset, Q), (V, Q), (F_1, Q), (F_2, Q), (F_3, Q)\}$

$\bar{I}_s = \{(\emptyset, Q), (F_4, Q), (F_5, Q), (F_6, Q)\}$ where

$(F_1, Q) = \{(\emptyset, \alpha)\}$, $(F_2, Q) = \{(\beta, \alpha, \beta)\}$,

$(F_3, Q) = \{(\emptyset, \beta)\}$,

$(F_4, Q) = \{(\emptyset, \gamma)\}$,

$(F_5, Q) = \{(\emptyset, \beta, \delta)\}$,

$(F_6, Q) = \{(\beta, \delta), (\beta, \gamma, \delta)\}$

are soft sets over V .

Here, $\{(\emptyset, \beta, \delta)\}$ and $\{(\emptyset, \gamma)\}$

are soft $\alpha\omega\bar{I}_s$ - Hausdorff space in $(V, \mathcal{C}_s, Q, \bar{I}_s)$.

3.3 Theorem

Let $(V, \mathcal{C}_s, Q, \bar{I}_s)$ be a soft ideal topological space. Then every soft Hausdorff space is soft $\alpha\omega\bar{I}_s$ - Hausdorff.

Proof: Let (V, \mathcal{C}_s, Q) be a soft Hausdorff space and we let two distinct points

$(x, Q) \neq (y, Q)$ in (V, Q) .

Then there exist two disjoint soft open sets $(\dot{X}, Q), (\dot{Y}, Q) \in \mathcal{C}_s$ with $(x, Q) \in (\dot{X}, Q)$ and $(y, Q) \in (\dot{Y}, Q)$ and $(\dot{X}, Q) \cap (\dot{Y}, Q) = (\emptyset, Q)$.

Since every soft open set is soft $\alpha\omega\bar{I}_s$ - open, then (\dot{X}, Q) and (\dot{Y}, Q) are soft $\alpha\omega\bar{I}_s$ - open. Thus (x, Q) and (y, Q) are separated by soft $\alpha\omega\bar{I}_s$ - open neighborhoods. Therefore the space is soft $\alpha\omega\bar{I}_s$ - Hausdorff.

3.4 Theorem

Let $(V, \mathcal{C}_s, Q, \bar{I}_s)$ be a soft ideal topological space. Then every soft ω - Hausdorff is soft $\alpha\omega\bar{I}_s$ - Hausdorff.

Proof: Suppose that $(V, \mathcal{C}_s, Q, \bar{I}_s)$ be the soft ω - Hausdorff. Then for any two distinct points $(x, Q) \neq (y, Q)$ there exist soft ω - open sets (\dot{X}, Q) and (\dot{Y}, Q) with $(x, Q) \in (\dot{X}, Q)$, $(y, Q) \in (\dot{Y}, Q)$ and $(\dot{X}, Q) \cap (\dot{Y}, Q) = (\emptyset, Q)$. But we know that every soft ω - open set is soft $\alpha\omega\bar{I}_s$ - open, so (\dot{X}, Q) and (\dot{Y}, Q) are soft soft $\alpha\omega\bar{I}_s$ - open and disjoint. Hence the space is soft $\alpha\omega\bar{I}_s$ - Hausdorff.

The converse of the above theorem need not be true as seen from the following Example.

3.5 Example

Let $V = \{\alpha, \beta, \gamma, \delta\}$,

$Q = \{\sigma\}$,

$\mathcal{C}_s = \{(\emptyset, Q), (V, Q), (F_1, Q), (F_2, Q), (F_3, Q)\}$

$\bar{I}_s = \{(\emptyset, Q), (F_4, Q), (F_5, Q), (F_6, Q)\}$

Where

$(F_1, Q) = \{(\emptyset, \alpha)\}$,

$(F_2, Q) = \{(\beta, \alpha, \beta)\}$,

$(F_3, Q) = \{(\emptyset, \beta)\}$,

$(F_4, Q) = \{(\emptyset, \gamma)\}$,

$(F_5, Q) = \{(\emptyset, \beta, \delta)\}$,

$(F_6, Q) = \{(\beta, \delta), (\beta, \gamma, \delta)\}$

are soft sets over V .

Here, $\{(\beta, \alpha, \beta)\}$ and $\{(\emptyset, \beta, \delta)\}$

are not soft ω - Hausdorff space in $(V, \mathcal{C}_s, Q, \bar{I}_s)$.

3.6 Theorem

Let $(V, \mathcal{C}_s, Q, \bar{I}_s)$ be a soft ideal topological space.

- Let $\bar{I}_s = (\emptyset, Q)$. Then $(V, \mathcal{C}_s, Q, \bar{I}_s)$ is soft $\alpha\omega\bar{I}_s$ - Hausdorff if and only if it is soft ω - Hausdorff.
- Let $\bar{I}_s = P(V, Q)$. Then $(V, \mathcal{C}_s, Q, \bar{I}_s)$ is soft Hausdorff if and only if it is soft $\alpha\omega\bar{I}_s$ - Hausdorff.

Proof:

- Let $\bar{I}_s = (\emptyset, Q)$. Then $(F, Q) \omega^* = Cl(F, Q)$ and $\omega Cl^*(F, Q) = (F, Q) \cup (F, Q) \omega^* = Cl(F, Q)$ for every subset (F, Q) of (V, Q) . Therefore, we have soft α -

\tilde{I}_s - open set is equal to the soft open set and hence, $(V, \mathcal{C}_s, Q, \tilde{I}_s)$ is soft $\alpha\omega\tilde{I}_s$ - Hausdorff if and only if it is soft ω - Hausdorff.

ii. Let $\tilde{I}_s = P(\{V, Q\})$. Then $(F, Q)\omega^* = (\{\}, Q)$ and $\omega Cl^*(F, Q) = (F, Q)$ for every soft subset (F, Q) of V . Let (F, Q) belongs to soft $\alpha\tilde{I}_s$ - open. Then $(F, Q) \subseteq \omega Cl^*(int(F, Q)) = int(F, Q)$ and hence, $(V, \mathcal{C}_s, Q, \tilde{I}_s)$ is soft Hausdorff if and only if it is soft $\alpha\omega\tilde{I}_s$ - Hausdorff.

4. Soft $\alpha\omega\tilde{I}_s$ - Normal Space In Soft Ideal Topological Spaces

In this section we introduce and study about a new normal space is known as soft $\alpha\omega\tilde{I}_s$ - Normal space in Soft ideal topological spaces.

4.1 Definition

A soft ideal topological space $(V, \mathcal{C}_s, Q, \tilde{I}_s)$ is said to be soft $\alpha\omega\tilde{I}_s$ - Normal space, if for every pair of disjoint soft closed sets (F, Q) and (G, Q) , there exist soft $\alpha\omega\tilde{I}_s$ - open sets (\dot{X}, Q) and (\dot{Y}, Q) such that $(F, Q) \subseteq (\dot{X}, Q)$ and $(G, Q) \subseteq (\dot{Y}, Q)$.

4.2 Example

Let $V = \{\alpha, \beta, \gamma\}$,
 $Q = \{\sigma\}$,
 $\mathcal{C}_s = \{\{\}, Q, (V, Q), (F_1, Q), (F_2, Q)\}$,
 $\tilde{I}_s = \{\{\}, Q, (F_3, Q)\}$

where

$(F_1, Q) = \{\{\}, \{\alpha\}\}$,
 $(F_2, Q) = \{\{\beta\}, \{\alpha, \beta\}\}$,
 $(F_3, Q) = \{\{\beta\}, \{\gamma\}\}$ are soft sets over V .
Here, $\{\{\beta\}, \{\alpha, \beta\}\}$ and $\{\{\beta\}, \{\gamma\}\}$ are soft $\alpha\omega\tilde{I}_s$ - Normal space in $(V, \mathcal{C}_s, Q, \tilde{I}_s)$.

4.3 Theorem Let $(V, \mathcal{C}_s, Q, \tilde{I}_s)$ be a soft ideal topological space then the following statements are equivalent:

- $(V, \mathcal{C}_s, Q, \tilde{I}_s)$ is soft $\alpha\omega\tilde{I}_s$ - Normal space.
- For all soft $\alpha\omega\tilde{I}_s$ - closed set (F, Q) and for each neighborhood (\dot{X}, Q) of (F, Q) there exist soft $\alpha\omega\tilde{I}_s$ - open neighborhood (\dot{Y}, Q) of (F, Q) such that soft $\alpha\omega\tilde{I}_s Cl(\dot{Y}, Q) \subseteq (\dot{X}, Q)$.
- For each pair of the soft $\alpha\omega\tilde{I}_s$ - closed set (F, Q) and (G, Q) there exists soft $\alpha\omega\tilde{I}_s$ - open neighborhood (\dot{X}, Q) of (F, Q) such that soft $\alpha\omega\tilde{I}_s Cl(\dot{X}, Q) \cap (G, Q) = (\{\}, Q)$.
- For each pair of the soft $\alpha\omega\tilde{I}_s$ - closed set (F, Q) and (G, Q) there exists soft $\alpha\omega\tilde{I}_s$ - open neighborhood (\dot{X}, Q) of (F, Q) and (\dot{Y}, Q) of (G, Q) such that $(\dot{X}, Q) \cap (\dot{Y}, Q) = (\{\}, Q)$.

Proof:

(i) \Rightarrow (ii) Let $(V, \mathcal{C}_s, Q, \tilde{I}_s)$ is soft $\alpha\omega\tilde{I}_s$ - Normal space. Let (F, Q) soft $\alpha\omega\tilde{I}_s$ - closed set and (\dot{X}, Q) be any open neighborhood (F, Q) . Let the soft $\alpha\omega\tilde{I}_s$ - closed set (F, Q) and

$(V, Q) - (\dot{X}, Q)$ and $(F, Q) \subseteq (\dot{X}, Q)$ implies that

$$(F, Q) \cap ((V, Q) - (\dot{X}, Q)) = (\{\}, Q).$$

Since (V, Q) is soft $\alpha\omega\tilde{I}_s$ - Normal space there exist soft $\alpha\omega\tilde{I}_s$ - open neighborhood (\dot{Y}, Q) of (F, Q) and (Z, Q) of $((V, Q) - (\dot{X}, Q))$ such that

$$(\dot{Y}, Q) \cap (Z, Q) = (\{\}, Q).$$

Now

$$(\dot{Y}, Q) \cap (Z, Q) = (\{\}, Q)$$

which implies that

$$(\dot{Y}, Q) \subseteq ((V, Q) - (Z, Q)).$$

Since

$(V, Q) - (Z, Q)$ is soft $\alpha\omega\tilde{I}_s$ - closed, soft $\alpha\omega\tilde{I}_s Cl(\dot{Y}, Q) \subseteq$ soft $\alpha\omega\tilde{I}_s Cl((V, Q) - (Z, Q)) = (V, Q) - (Z, Q)$.

Therefore soft $\alpha\omega\tilde{I}_s Cl(\dot{Y}, Q) \cap (Z, Q) = (\{\}, Q)$ and soft $\alpha\omega\tilde{I}_s Cl(\dot{Y}, Q) \cap (Z, Q) \subseteq$ soft $\alpha\omega\tilde{I}_s Cl(\dot{Y}, Q) \cap (Z, Q) = (\{\}, Q)$, thus soft $\alpha\omega\tilde{I}_s Cl(\dot{Y}, Q) \subseteq (\dot{X}, Q)$.

(ii) \Rightarrow (iii) Let (F, Q) and (G, Q) be disjoint soft $\alpha\omega\tilde{I}_s$ - closed sets.

Since

$(F, Q) \cap (G, Q) = (\{\}, Q)$ and $(V, Q) - (G, Q)$ be soft $\alpha\omega\tilde{I}_s$ - open, we have $(H, Q) \subseteq (V, Q) - (G, Q)$. Hence

$(V, Q) - (G, Q)$ is soft $\alpha\omega\tilde{I}_s$ - open neighborhood (\dot{X}, Q) of (F, Q) such that soft $\alpha\omega\tilde{I}_s Cl(\dot{X}, Q) \subseteq (V, Q) - (G, Q)$. Therefore, soft $\alpha\omega\tilde{I}_s Cl(\dot{X}, Q) \cap (G, Q) = (\{\}, Q)$.

(iii) \Rightarrow (iv) Let (F, Q) and (G, Q) be disjoint soft $\alpha\omega\tilde{I}_s$ - closed sets. By (iii) there exists soft $\alpha\omega\tilde{I}_s$ - open neighborhood (\dot{X}, Q) of (F, Q) such that soft $\alpha\omega\tilde{I}_s Cl(\dot{X}, Q) \cap (G, Q) = (\{\}, Q)$. Now (G, Q) and soft $\alpha\omega\tilde{I}_s Cl(\dot{X}, Q)$ are disjoint soft $\alpha\omega\tilde{I}_s$ - closed sets. Hence by (iii), there exists soft $\alpha\omega\tilde{I}_s$ - open neighborhood (\dot{Y}, Q) of (G, Q) such that soft $\alpha\omega\tilde{I}_s Cl(\dot{Y}, Q) \cap (G, Q) = (\{\}, Q)$.

(iv) \Rightarrow (i) Let (F, Q) and (G, Q) be disjoint soft $\alpha\omega\tilde{I}_s$ - closed sets. By (iv) there exists soft $\alpha\omega\tilde{I}_s$ - open neighborhood (\dot{X}, Q) of (F, Q) and (\dot{Y}, Q) of (G, Q) such that $(\dot{X}, Q) \cap (\dot{Y}, Q) = (\{\}, Q)$. Since $(\{\}, Q) \subseteq (\dot{X}, Q) \cap (\dot{Y}, Q) = (\{\}, Q)$. Hence, $(V, \mathcal{C}_s, Q, \tilde{I}_s)$ is soft $\alpha\omega\tilde{I}_s$ - Normal.

4.4 Theorem

Let $(V, \mathcal{C}_s, Q, \tilde{I}_s)$ be a soft ideal topological space. Then every soft ω - Normal is soft $\alpha\omega\tilde{I}_s$ - Normal.

Proof:

Suppose $(V, \mathcal{C}_s, Q, \tilde{I}_s)$ is soft ω -Normal. Let (F, Q) and (G, Q) be disjoint soft ω - closed sets. Then $(F, Q) \cap (G, Q) = (\{\}, Q)$, if (F, Q) and (G, Q) are soft ω - closed sets. By inclusion of soft ω - closed classes, each of (F, Q) and (G, Q) are also soft $\alpha\omega\tilde{I}_s$ - closed. Since the space is $\alpha\omega\tilde{I}_s$ - Normal space. Then there exist soft $\alpha\omega\tilde{I}_s$ -open sets (\dot{X}, Q) and (\dot{Y}, Q) such that $(F, Q) \subseteq (\dot{X}, Q)$ and $(G, Q) \subseteq (\dot{Y}, Q)$, $(\dot{X}, Q) \cap (\dot{Y}, Q) = (\{\}, Q)$.

The converse of the above theorem need not be true as seen from the following Example.

4.5 Example

Let $V = \{\alpha, \beta, \gamma, \delta\}$,

$Q = \{\sigma\}$,

$C_s = \{(\{\}, Q), (V, Q), (F_1, Q), (F_2, Q), (F_3, Q)\}$

$I_s = \{(\{\}, Q), (F_4, Q), (F_5, Q)\}$ where

$(F_1, Q) = \{\}, \{\alpha\}$,

$(F_2, Q) = \{\beta\}, \{\alpha, \beta\}$,

$(F_3, Q) = \{V\}, \{\beta\}$,

$(F_4, Q) = \{\}, \{\gamma\}$,

$(F_5, Q) = \{\beta, \delta\}, \{\beta, \gamma, \delta\}$

are soft sets over V .

Here, (F_3, Q) and (F_4, Q) are soft ω - Normal but not soft $\alpha\omega I_s$ - Normal space in (V, C_s, Q, I_s) .

4.6 Theorem

Let (V, C_s, Q, I_s) be a soft ideal topological space which is soft $\alpha\omega I_s$ - Normal. Then the following hold:

- For every soft closed set (F, Q) and a soft ω -open set (G, Q) containing (F, Q) , there exist soft $\alpha\omega I_s$ - open set (X, Q) such that $(F, Q) \subseteq \text{int}_s^*(X, Q) \subseteq (X, Q) \subseteq (G, Q)$.
- For every soft ω -closed set (F, Q) and every open set (G, Q) containing (F, Q) , there exists soft $\alpha\omega I_s$ - open set (X, Q) such that $(F, Q) \subseteq (X, Q) \subseteq \text{cl}_s^*(X, Q) \subseteq (G, Q)$.

Proof:

(i) Let (F, Q) be a soft closed set and (G, Q) be a soft ω -open set containing (F, Q) . Then $(F, Q) \cap ((V, Q) - (G, Q)) = \{\}, Q\}$ where (F, Q) be a soft closed and $(V, Q) - (G, Q)$ is soft ω -closed set. Then there exist disjoint soft $\alpha\omega I_s$ - open set (X, Q) and (Y, Q) such that $(F, Q) \subseteq (X, Q)$ and $((V, Q) - (G, Q)) \subseteq (Y, Q)$. Since $(X, Q) \cap (Y, Q) = \{\}, Q\}$, we have $(X, Q) - (G, Q) \subseteq (Y, Q)$. Therefore, $(F, Q) \subseteq \text{int}_s^*(X, Q) \subseteq (X, Q) \subseteq ((V, Q) - (G, Q)) \subseteq (G, Q)$.

(ii) Let (F, Q) be a soft ω - closed set and (G, Q) be a soft $\alpha\omega I_s$ -open set containing (F, Q) . Then $((V, Q) - (G, Q))$ be a soft $\alpha\omega I_s$ -closed set contained in the soft ω - open set $((V, Q) - (G, Q))$. By (i), there exist soft $\alpha\omega I_s$ - open set (Y, Q) such that $(X, Q) - (G, Q) \subseteq \text{int}_s^*(Y, Q) \subseteq (Y, Q) \subseteq ((V, Q) - (F, Q))$. Therefore, $(F, Q) \subseteq ((V, Q) - (Y, Q)) \subseteq \text{cl}_s^*((V, Q) - (Y, Q)) \subseteq (G, Q)$. If $(X, Q) = ((V, Q) - (Y, Q))$, then $(F, Q) \subseteq (X, Q) \subseteq \text{cl}_s^*(X, Q) \subseteq (G, Q)$ and so (X, Q) is the required soft $\alpha\omega I_s$ - closed set in (V, C_s, Q, I_s) .

5. SOFT $\alpha\omega I_s$ - REGULAR SPACE IN SOFT IDEAL TOPOLOGICAL SPACES

In this section we introduce and study about a new regular space is known as soft $\alpha\omega I_s$ -Regular space in Soft ideal topological spaces.

5.1 Definition

A soft ideal topological space (V, C_s, Q, I_s) is said to be soft $\alpha\omega I_s$ - Regular space, if for each pair of point x and a soft closed set (G, Q) not containing (x, Q) , there exist disjoint soft $\alpha\omega I_s$ - open sets (X, Q) and (Y, Q) such that $x \subseteq (X, Q)$ and $(G, Q) \subseteq (Y, Q)$.

5.2 Example 2

Let $V = \{\alpha, \beta, \gamma, \delta\}$,

$Q = \{\sigma\}$,

$C_s = \{(\{\}, Q), (V, Q), (F_1, Q), (F_2, Q), (F_3, Q)\}$

$I_s = \text{SS}(V)_Q$ where

$(F_1, Q) = \{\}, \{\alpha\}$,

$(F_2, Q) = \{\}, \{\alpha, \beta\}$,

$(F_3, Q) = \{V\}, \{\beta\}$

are soft sets over V .

Then (V, C_s, Q, I_s) is soft $\alpha\omega I_s$ - Regular space..

5.3 Theorem

Let (V, C_s, Q, I_s) be a soft ideal topological space and $x \in (V, Q)$. Then the following are equivalent :

- (V, C_s, Q, I_s) is soft $\alpha\omega I_s$ - Regular space.
- For every soft ω - closed set (F, Q) such that $(x, Q) \cap (F, Q) = \{\}, Q\}$, there exist disjoint soft ω - open set (G_1, Q) and (G_2, Q) such that $(x, Q) - (G_1, Q) \in I_s$ and $(F, Q) - (G_2, Q) \in I_s$.

Proof:

(i) \Rightarrow (ii) For every soft ω - closed set (F, Q) such that $(x, Q) \cap (F, Q) = \{\}, Q\}$. Then $x \notin (F, Q)$. By hypothesis, there exist disjoint soft $\alpha\omega I_s$ - open sets (G_1, Q) and (G_2, Q) such that $(x, Q) - (G_1, Q) \in I_s$ and $(F, Q) - (G_2, Q) \in I_s$.

(ii) \Rightarrow (i) Let (F, Q) be a soft ω - closed set such that $x \notin (F, Q)$. Then $(x, Q) \cap (F, Q) = \{\}, Q\}$. there exist disjoint soft $\alpha\omega I_s$ - open sets (G_1, Q) and (G_2, Q) such that $(x, Q) - (G_1, Q) \in I_s$ and $(F, Q) - (G_2, Q) \in I_s$. Therefore, (V, C_s, Q, I_s) is soft $\alpha\omega I_s$ - Regular space.

5.4 Theorem

A soft subspace (V_1, C_{1s}, Q, I_{1s}) of a soft $\alpha\omega I_s$ - Regular space (V, C_s, Q, I_s) is soft $\alpha\omega I_{1s}$ - Regular space.

Proof:

Let $y \in V_1$ and (G, Q) be a soft ω - closed set in V_1 . Such that $y \notin (G, Q)$.

Then $(G, Q) = (V_1, Q) \cap (F, Q)$ for some soft ω - closed set (F, Q) in V and $y \notin (F, Q)$.

Since (V, C_s, Q, I_s) is soft $\alpha\omega I_s$ - Regular space, there exist disjoint soft ω - open set (F_1, Q) and (F_2, Q) in V such that $y \in (F_1, Q)$ and $((F, Q) - (F_1, Q)) \in I_s$. Then, we have $((F, Q) - (F_2, Q)) \cap (V_1, Q) \in I_{1s}$. Since $(V_1, Q) \cap (F_1, Q)$ and $(V_1, Q) \cap (F_2, Q)$ are disjoint soft ω - open sets, (V_1, C_{1s}, Q, I_{1s}) is soft $\alpha\omega I_{1s}$ - Regular space.

5.5 Theorem

Let $m_{\rho\mu} : SS(V)_Q \rightarrow SS(\hat{W})_N$ be a soft function which is bijective, soft irresolute and soft open irresolute. If $(V, \mathcal{C}_s, Q, \hat{I}_s)$ is soft $\alpha\omega\hat{I}_s$ – Regular space, then $(\hat{W}, \Omega_s, N, \hat{I}_s)$ is a soft $\alpha\omega\text{-}m_{\rho\mu}(\hat{I}_s)$ – Regular space.

Proof: Let (G, N) be a soft ω – closed set in (\hat{W}, N) and $(w, N) \in (\hat{W}, N)$ such that $(w, N) \notin (G, N)$. Since $m_{\rho\mu}$ is a homeomorphism soft function, then there exist $(v, Q) \in (V, Q)$ such that $m_{\rho\mu}(v, Q) = (w, N)$ and $(F, Q) = m^{-1}_{\rho\mu}(G, N)$ is a soft ω – closed set in (V, Q) such that $(V, Q) \notin (F, Q)$. By hypothesis, there exist disjoint soft ω – open set (F_1, Q) and (F_2, Q) such that $(V, Q) \in (F_1, Q)$ and $(F_2, Q) - (F, Q) \in \hat{I}_s$. It follows that, $(F, Q) \in F_Q(e)$ for all $e \in Q$ and $m_{\rho\mu}[(F_2, Q) - (F, Q)] \in m_{\rho\mu}(\hat{I}_s)$. Hence $m_{\rho\mu}(v, Q) = (w, N) \in m_{\rho\mu}[F_Q(e)]$ for all $e \in Q$. Therefore, $(\hat{W}, \Omega_s, N, \hat{I}_s)$ is a soft $\alpha\omega\text{-}m_{\rho\mu}(\hat{I}_s)$ – Regular space.

5.6 Theorem

Let $(V, \mathcal{C}_s, Q, \hat{I}_s)$ be a soft ideal topological space and $(v, Q) \in (V, Q)$ then the following statements are equivalent:

- i. $(V, \mathcal{C}_s, Q, \hat{I}_s)$ is soft $\alpha\omega\hat{I}_s$ – Regular space.
- ii. For all soft $\alpha\omega\hat{I}_s$ – open set (F, Q) , there exist soft $\alpha\omega\hat{I}_s$ – open neighborhood $(y, Q) \in (F, Q)$ and soft $\alpha\omega\hat{I}_s\text{Cl}(F, Q) - (X, Q) \in \hat{I}_s$.
- iii. For all soft $\alpha\omega\hat{I}_s$ – closed set (G, Q) , there exist soft $\alpha\omega\hat{I}_s$ – open neighborhood $(y, Q) \notin (G, Q)$ and soft $\alpha\omega\hat{I}_s\text{Cl}(X, Q) \cap (G, Q) \in \hat{I}_s$.

Proof:

(i) \Rightarrow (ii) Let (F, Q) be a soft $\alpha\omega\hat{I}_s$ – open set such that $(v, Q) \in (F, Q)$. Then $(F, Q)'$ is a soft $\alpha\omega\hat{I}_s$ – closed set such that $(v, Q) \notin (F, Q)'$. It follows by (i), there exist disjoint soft $\alpha\omega\hat{I}_s$ – open sets (H, Q) and (K, Q) such that $(v, Q) \in (H, Q)$ and $(F, Q)' - (K, Q) = (K, Q)' - (F, Q) \in \hat{I}_s$. Since $(H, Q) \cap (K, Q) = \{\}, Q\}$. Then $(H, Q) \subseteq (K, Q)'$. So soft $\alpha\omega\hat{I}_s\text{Cl}(H, Q) \subseteq (K, Q)'$. Hence, soft $\alpha\omega\hat{I}_s\text{Cl}(H, Q) - (F, Q) \subseteq (K, Q)' - (F, Q) \in \hat{I}_s$ which implies that soft $\alpha\omega\hat{I}_s\text{Cl}(F, Q) - (X, Q) \in \hat{I}_s$.

(ii) \Rightarrow (iii) Let (G, Q) soft $\alpha\omega\hat{I}_s$ – closed set such that $(v, Q) \notin (G, Q)$. Then $(G, Q)'$ soft $\alpha\omega\hat{I}_s$ – open set such that $(v, Q) \in (G, Q)'$ from (ii), there exist soft $\alpha\omega\hat{I}_s$ – open set (J, Q)

such that $(v, Q) \in (J, Q)$ and soft $\alpha\omega\hat{I}_s\text{Cl}(J, Q) - (G, Q)' = \text{soft } \alpha\omega\hat{I}_s\text{Cl}(J, Q) \cap (G, Q) \in \hat{I}_s$.

(iii) \Rightarrow (i) Let (K, Q) be a soft $\alpha\omega\hat{I}_s$ – closed set such that $(v, Q) \notin (K, Q)$. From (iii) there exist soft $\alpha\omega\hat{I}_s$ – open set (J, Q) such that $(v, Q) \in (J, Q)$ and soft $\alpha\omega\hat{I}_s\text{Cl}(J, Q) \cap (G, Q) = (J, Q) - [\text{soft } \alpha\omega\hat{I}_s\text{Cl}(J, Q)]' \in \hat{I}_s$, where, (J, Q) and $[\text{soft } \alpha\omega\hat{I}_s\text{Cl}(J, Q)]'$ are disjoint soft

$\alpha\omega\hat{I}_s$ – open sets. Therefore, $(V, \mathcal{C}_s, Q, \hat{I}_s)$ is soft $\alpha\omega\hat{I}_s$ – Regular space.

References

1. Kandil, O.A.E. Tantawy, S.A. El-Sheikh and A.M. Abd El-latif (2014), Soft ideal theory, Soft local Function and generated soft topological spaces, *Appl. Math. Inf. Sci.* 8 (4) 1595-1603.
2. A. Padma (2018), Normal Space in Soft Ideal Topology, *International Journal of Pure and Applied mathematics*, Volume 118 No.20, 2011-2017, ISSN:1314-3395.
3. Ahmad Al-Omari, Soft topology in ideal topological spaces, Al al-Bayt University, Faculty of Science, Department of Mathematics P.O.Box 130095, Mafraq 25113.
4. Aysegul Caksu Guler and Goknur Kale, Regularity and Normality on Soft Ideal Topological Spaces, *Annals of Fuzzy Mathematics and Informatics*, Volume 9, No.3,(March 2015), pp.373-383, ISSN: 2093-9310.
5. D. Molodstov, Soft set theory-First results, *Comput. Math. Appl.* 37 (4-5), 1931,1999.
6. M. Shabir, M. Naz, On Soft Topological Spaces, *Computer and Mathematics with Applications*, 61(7)(2011), ISSN: 1786-1799.
7. N. Chandramathi and V. Kiruthika, Soft $\alpha\omega\hat{I}_s$ – Closed sets in soft ideal topological spaces, *Indian journal of natural sciences*, ISSN : 0976 - 0997.
8. N. Chandramathi, V. Kiruthika and P. Nithya Soft $\alpha\omega\hat{I}_s$ – Continuous Mappings in soft ideal topological spaces, *Fuzzy System and Soft Computing*, ISSN : 1819 - 436284.
9. N. Chandramathi, V. Kiruthika and Soft $\alpha\omega\hat{I}_s$ – Homeomorphism in soft ideal topological spaces, *Indian journal of Creative Research Thoughts*, ISSN : 2320 - 2882.
10. N. Chandramathi, ω I – Normal and Regular Spaces, *International Journal of Mathematical Archive*, Volume 2, No.12, (2011), ISSN: 2590 - 2597.
11. S. Brindha Devi, V. Inthumathi et.,al, Soft β – Hausdorff and Soft β – Regular Spaces via Soft Ideals, *International journal of Mathematics and its Applications*, Volume 4, Issue 1-A(2016), 15-22, ISSN: 2347-1557.
12. S.Jafari, T. Noiri, K.Viswanathan and M.Rajamani, Decomposition of ω -continuity in topological spaces, *J. Adv. Math studies*, Vol.3(2010), no.2, 49-55.