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ABSTRACT 
 

In this paper, we study the existence of mild solutions of nonlinear neutral functional Volterra- 
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1. INTRODUCTION 

Many phenomena in several branches have 
mathematical model in terms of differential 
equations. Differential equations are like a bridge 
which links mathematics and science with 
applications. It is a rightly considered as a language 
of sciences. Many branches of science have led to 
some kind of differential equations. 

The study of integrodifferential equations has 
emerged in recent years as an independent branch of 

 

 
Balachandran and Chandrasekaran (1996), Lin and 
Liu (1996) and Murugesu and Suguna (2010). 

In this paper, we extend this problem to neutral 
functional Volterra-Fredholm type integro 
differential equations with nonlocal conditions and 
discuss the existence of solutions for nonlinear 
neutral functional Volterra-Fredholm integro 
differential equations with nonlocal conditions of the 
form 
 d 
x(t)  F (t, x(t), x(b (t)),, x(b (t))  Ax(t)  G(t, x(t), x(a (t)),, x(a (t))) 

dt 1 m 1 n 

 
 t a 

modern research because of its connections to many 
applied fields such as elasticity, biology, epidemics 
and other branches of science and engineering. 
Neutral differential equations arises in many areas of 
applied mathematics and for this reasons this 
equations have received much attention in the last 
few decades. 

The advantages of using nonlocal conditions is 
that measurable at more places can be incorporated 
to get better models. The nonlocal Cauchy problem 
for abstract evolution differential equation was first 
considered by Byszewski (Byszwski, 1991) 
Subsequently, several authors have investigated the 
problem for different types of nonlinear differential 
equations and integrodifferential equations 
including functional differential equations in Banach 
spaces (Balachandran, 1998; Byszwski and Acka, 
1998; Balachandran and Park, 2001a, b; Fu and 
Ezzinbi, 2004). 

In the past several years theorems about 
existence, uniqueness and stability of differential and 
functional differential abstract evolution Cauchy 
problem have been studied by Byszewski and 
Lakshmikantham (1990), Byszewski (1997, 1998), 

 K  t, x(t),  k (t, s, x(s))ds, h(t, s, x(s))ds , 0  t  a, 
 0 0 

x(0)  x0  g(x) 

------------------(1) 

where –A generates an analytic semigroup and 
F, G, K, k, h are given functions to specifed later. 

This paper has the following subsections. In 
section 2, we present some preliminary lemmas and 
definitions which will be used to prove our main 
results. In section 3, we present the existence of mild 
solution of the system (1) using Sadovskii’s fixed 
point theorem (Sodovskii, 1967). 

2 PRELIMINARIES 

Throughout this work, let –A is the infinitesimal 
generator of a compact analytic semigroup of 
uniformly bounded linear operators T(t) defined in 
the Banach spaces X. Let 0 then define the 
fractional power A, for 0    1, as a closed linear 
operator on its domain D(A) which is dense in X. 
Further, D(A) is a Banach space under the norm 

|| x || = || Ax ||, xD(A) 

Which we denote by X. Then for each 0 <   1, 
XX for 0 <  <   1 and the imbedding is 
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compact  whenever  the  resolvent  operator  of   A  is For our convenience, let us take 
compact. We assume that F(0, x(0), x(b (0)), x(b (t))) = 0. 

1 m 

a) There is a M  1 such that || T(t) ||  M, for all 0  t  a. 
Let M0 = || A- || and also assume the following 

b) For any a > 0, there exists a positive constant C, 

|| A 
 
T (t) || 

C , 0  t  a 
t


(2) 

hypotheses: 

(H1) F : [0,a]  Xm+1 X is a continuous functions 
and there exists a (0,1) and L, L1 >0 such that the 

function AF satisfies the Lipschitz condition: 

|| A F(s , x , x ,, x )  A F(s , x0 , x1 ,, xm ) || L | s   s |   max  || x   x i  ||
1 0 1 m 2 

 1 2 
i0,1,,m 

i 

for any 0  s1, s2  a, 
inequality 
|| A


 F (t, x , x ,, x 

x
i 
, xi 

 X, i = 0, 1, …, m and the 

) ||  L (max{|| x ||:i  0,1,, m}  1) 

DEFINITION : 2.1 (Pazy, 1983) 

Let X be a Banach space, a one parameter 
family T(t), 0 t<+, of bounded linear operators 

0      1 m 1 i 

---------------- (3) 
from X to X is a semigroup of bounded linear 
operators on X, if 

holds for any (t, x0, x1, … , xm) [0,a]  Xm+1. 

(H2) The function G : [0,a]  Xn+1 X satisfies the 
following conditions : 

(i) For each t[0,a], the function G(t, .) :  
Xn+1  X is continuous and for each (x0, x1, … , 
xn)Xn+1 the function G(. , x0, x1, …, xn) : [0,a]  X is 
strongly measurable. 

(ii) For each positive number nN, there is a 

positive function nL1([0,a]) such that 

(i) T(0)=I, where I is the identity operator on X, 

(ii) T(t+s)=T(t)T(s) for every t, s  0, (the semigroup 
property) 

A semigroup of bounded linear operator T(t) is 
uniformly continuous if 

lim || T (t)  I || 0 
t0 

 

THEOREM : 2.1. (SADOVSKII’S FIXED POINT 
THEOREM) (Sodovskii, 1967) 

sup 
||x0 ||,,||xn ||n 

|| G(t, x0 , x1 ,, xn ) ||n (t ) 

1 
a 

Let  be a condensing operator on a Banach 
space X, that is  is continuous and takes bounded 

lim 
n n n  (s)ds 

0 

    sets into bounded sets and ((B))  (B) for every 
 

(H3) The function K : [0,a]  X  X  X X satisfies 
bounded set B of X with (B)>0. If (T)T for a 
convex closed and bounded set  of X, then  has a 

the following conditions: fixed point in X. 

(i) 

., .): X 
For each t[0,a], the function K(t, ., 

X  X X and for each x, y, z X, K(., x, y, z) : 
3. EXISTENCE OF MILD SOLUTION 

DEFINITION 3.1. 
[0,a] X is strongly measurable. 

(ii) For each positive number nN, 

there exists a positive function qnL1([0,a]) such that 

 s a 

A continuous function x(.) : [0,a]  X is said to 
be a mild solution of the Cauchy problem (1), if the 
function AT(t-s)F(s, x(s), x(b1(s)), …, x(bm(s))), 
s[0,a)   is   integrable   on   [0,a)   and   the   integral 

sup K  s, x(s),  k (s, , x( ))d ,  h(s, , x( ))d   qn (s) 
||x||n        0 0 

a 

equation is satisfied. 
x(t)  T (t)x  F (0, x(0), x(b (0)),, x(b (0)))  g (x) F (t, x(t), x(b (t)),, x(b (t))) 

and lim  qn (s)ds   1  0 1 m 1 m 

t 

 
(H4) a , b 

n  n 
0

 

 C([0,a]; [0,a] ), i = 1, …, n, j = 1, …, m. 

  AT(t  s)F (s, x(s), x(b1 (s)),, x(bm (s)))ds 
0 

t 

 T (t  s)G(s, x(s), x(a1 (s)),, x(am (s)))ds 

i j 0
 

 s a gC(E ; X), here after E =  T (t  s)K  s, x(s),  k (s, , x( ))d , h(s, , x( ))d ds 

0  0 0 

C([0,a]; X) and g is completely continuous. 

(H5) There exist positive constants M3 and M4 such 
that 

 

 
THEOREM 3.1 

 
------------------- (4) 

|| g(x) ||  M3 ||x|| +M4 for every xE. 
If the assumptions (H1) – (H5) are satisfied and 

x0X, then the Cauchy problem (1) has a mild 

1 

t 
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 M 0 L sup || x1 (s)  x2 (s) ||  (t  s)1 
Lds sup || x1 (s)  x2 (s) || 

 M || x || MM r  MM  M L (r  1)  a  L (r  1)  M  (s)ds  M q (s)ds t a 





1 

t t 

solution provided that 
L : L[M  

1 
C 

 

 

 
a 

 
]1 

 

 
           (5) 

Next we will show that the operator Q has a fixed 
point on Br : 

0 0  
1

(    M )M  M L  
1 

C a 
 
L 1 

1 3 0    1          
1 1 

 
           (6) Let us decompose Q as Q = Q1+Q2 where the 

operators Q1 and Q2 are defined on Br respectively by 
Where M0 

Proof: 

= || A- ||.  
t 

(Q1 x)(t)  F (t, v(t))   AT(t  s)F (s, v(s))ds 
0 

For the sake of brevity, we write that 

t 

(Q2 x)(t)  T (t)[x0  g(x)]  T (t  s)G(s, u(s))ds 
0 

t  s a (t, x(t), x(b1(t)), …, x(bm(t))) = (t, v(t))  T (t  s)K  s, x(s),  k (s, , x( ))d ,  h(s, , x( ))d ds 

0  0 0 

and (t, x(t), x(a1(t)),…, x(am(t))) = (t, u(t)). 

Define the operator Q on E by the formula 
 

(Qx)(t)  T (t)x0   g (x) F (t, v(t))   AT (t  s)F (s, v(s))ds  T (t  s)G(s, u(s))ds 

for 0  t  a, and we will verify that Q1 is contraction 
and          Q2 is      a      compact      operator. 
Claim : Q1 is a contraction 

Let x , x  B . Then for each t  [0,a] and by 
0 0 1      2 r 

t  s a  condition (H1) and (5), we have 
 T (t  s)K  s, x(s),  k(s, , x( ))d ,  h(s, , x( ))d ds 

0  0 0  
t 

|| (Q1 x1 )(t)  (Q1 x2 )(t) |||| F (t, v1 (t))  F (t, v2 (t)) ||   AT(t  s)[F (s, v1 (s))  F (s, v2 (s))]ds 

For positive integer r, let  

0 t C1

Br  x  E :|| x(t) || r, 0  t  a



0sa 

 
 

0 0sa 

  
 1  

LM 0  
 

C1 a  sup || x1 (s)  x2 (s) || then for each r, Br is clearly a bounded closed convex 
set in E. Since by (2) and (3) the following relation 
holds: 

 
|| AT(t  s)F (s, v(s)) || || A1 T (t  s) A F (s, v(s)) || 

  0sa 

 L0  sup || x1 (s)  x2 (s) || 
0sa 

Thus 
|| Q1 x1  Q1 x2 ||  L0 || x1  x2 || 

So by assumption 0 < L0 < 1, we see that Q1 is a 

 
C

1 L (r  1) contraction. 

(t  s)1 1
 Claim : Q2 is compact 

then from Bochners theorem (Marle, 1974) it follows 
that AT(t-s)F(s,v(s)) is integrable on [0,a], so Q is 
well defined on Br. 

Claim : there exists a positive integer r such that 
QBr  Br : 

If it is not true, then for each positive integer 

To prove this we have to prove that Q2 is 
continuous on Br. 

Let {xn}Br with xnx in Br, then by (H2) (i), we have 

 
G(s, un (s))  G(s, u(s)), n  

r, there is a function x (.)B , but Qx (t)B , that is  t a   t a 

r r r r K t, xn (t),  k(t, s, xn (s))ds,  h(t, s, xn (s))ds  K t, x(t),  k(t, s, x(s))ds,  h(t, s, x(s))ds  as n  
||Qxr(t)|| > r for some t(r)  [0,a], where t(r) denotes  0 0   0 0 

t is dependent of r. However, on the other hand, we 
have 

Since 
|| G(s, un (s))  G(s, u(s)) ||  2n (s), 

 t a   t a 

r || Qxr (t) || ||K t, xn  (t),  k(t, s, xn (s))ds,  h(t, s, xn (s))ds  K t, x(t),  k(t, s, x(s))ds,  h(t, s, x(s))ds || 2qn (s) 

t t 
0 0   0 0 

   T (t)x0   g(x) F (t, vr (t))   AT(t  s)F (s, vr (s))ds  T (t  s)G(s, u r (s))ds by the dominated convergence theorem, we have 
0 0 

t  s a  t
 

 T (t  s)K  s, x(s),  k(s, , x( ))d ,  h(s, , x( ))d ds || Q x  Q x || sup || T (t)[g(x )  g(x)]  T (t  s)[G(s, u (s))  G(s, u(s))]ds 
0  0 

 
0 3 4 

0 

1 
 

0   1 


a a 

1 1  n  n 

2 n 2 n n 

0t a 0 

    
0 0  T (t  s)K  s, xn (s),  k(s, , xn ( ))d ,  h(s, , xn ( ))d 

Dividing on bothsides by r and taking the limit as r
0                0 

 t 

0 
a 

, we get,  K  s, x(s),  k (s, , x( ))d ,  h(s, , x( ))d ds|| 

 
(   1 

 

 M 3 )M 

 

 M 0 L1 

 
 

1 
C 








1  


a 


 L 1 

 
 0 as 

 0 

n  

0 



This contradicts (6). Hence for some positive integer 
r, QBr  Br. 

(i.e) Q2 is continuous. 

Next, we prove that {Q2x : xBr} is a family 
of equicontinuous functions. To see this we fix t1>0 
and t2>t1 and >0 be enough small. Then 

C t 
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

 
t1 

|| (Q2 x)(t2 )  (Q2 x)(t1 ) |||| T (t2 )  T (t1 ) |||| x0  g(x) || || T (t2  s)  T (t1  s) |||| G(s, u(s)) || ds 
0 

Balachandran, K. and J.Y. Park, (2001b). Existence of 
t1 

 || T (t2  s)  T (t1  s) |||| G(s, u(s)) || ds 
t1 

t2 

 || T (t2  s) |||| G(s, u(s)) || ds 

solution of second order nonlinear differential 
equations with nonlocal conditions in Banach 

t1 

t1 


 s a 
spaces. Ind. J. Pure Appl. Math. 32: 1883-1892. 

 ||T (t2  s)  T (t1  s) |||| K  s, x(s),  k (s, , x( ))d ,  h(s, , x( ))d  || ds 

0  0 0 
t1  s a  Balachandran, K. and M. Chandrasekaran, (1996). 

 ||T (t2  s)  T (t1  s) |||| K  s, x(s),  k (s, , x( ))d ,  h(s, , x( ))d  || ds 

t1 

t2 

 0 0 

 s a 
Existence of solutions of a delay differential 

 ||T (t2  s) |||| K  s, x(s),  k (s, , x( ))d ,  h(s, , x( ))d  || ds 

t1  0 0 

Note that ||G(s,u(s))||  n(s) and n(s)L1, we see 
that ||Q2x(t2)-Q2x(t1)|| tends to zero independently 
of xBr as t2-t10. Since the compactness of T(t), t>0 
implies the continuity of T(t), t>0 in t in the uniform 
operator topology. 

We can prove that the function Q2x, xBr are 
equicontinuous at t=0. Hence Q2 maps Br into a  
family of equicontinuous function. 

Claim : V(t)={(Q2x)(t) : xBr} is relatively 
compact in X. 

Let 0<ta be a fixed and 0 <  < t. For xBr, 
we define 

t 

(Q2, x)(t)  T (t)[x0  g(x)]  T (t  s)G(s, u(s))ds 
0 
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Appl. Math. 27: 443-449. 
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t  t a for  neutral functional   differential evolution 

  || T (t  s)K  s, x(s),  k(s, , x( ))d ,  h(s, , x( ))d  || ds 

t   o 

t t 

o  equations with nonlocal conditions. Nonlinear 

 M 
t 

gk (s)ds  M  qr (s)ds 
t 

Anal. 54: 215-227. 

Therefore, there are relatively compact sets 
arbitrarily close to the set V(t). Hence the set V(t) is 
also relatively compact in X. 

Thus, by Arzela-Ascoli theorem, Q2 is a 
compact operator. Those arguments enable us to 
conclude that Q=Q1+Q2 is a condensing map Br, and 
by the Sadovskii’s fixed point theorem there exist a 
fixed point x(.) for Q on Br.Therefore, the Cauchy 
problem (1) has a mild solution, and the proof is 
completed. 
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