SUPRA bTµ - CLOSED SETS IN MINIMAL STRUCTURES

Krishnaveni, K. and M. Vigneshwaran*
Department of Mathematics, Kongunadu Arts and Science College (Autonomous), Coimbatore.
*E.mail: vignesh.mat@gmail.com

ABSTRACT

We introduce a new set called mbTµ-closed set in a supra topological spaces which are defined on a family of sets satisfying some minimal conditions.

Mathematics subject classification: 54A05
Keyword: mbTµ-closed set

1. INTRODUCTION

In Mashhour et al. (1983) introduced Supra topological spaces and studied S-continuous maps and S*-continuous maps. Popa and Noiri (2000) introduced concept of minimal structure on a nonempty set. Also they introduced the notation mX-open set and mX-closed set and characterize these sets using mX-cl and mX-int operators respectively.

In this paper, we introduced a new class mX-structures set called minimally bTµ-closed set called as mbTµ-closed set in supra topological spaces. Further, we study the properties of mbTµ-closed sets in supra topological spaces.

2. PRELIMINARIES

Let (X,µ) be a supra topological space and A be a subset of X. The closure of A and interior of A are denoted by clµ(A) and intµ(A) respectively in supra topological spaces.

Definition 2.1 (Mashhour et al., 1983; Sayed and Noiri, 2010)

A subfamily of µ of X is said to be a supra topology on X, if

(i) X, ∅ ∈ µ
(ii) if Ai ∈ µ for all i ∈ I then ∪Ai ∈ µ.

The pair (X,µ) is called supra topological space. The elements of µ are called supra open sets in (X,µ) and complement of a supra open set is called a supra closed set.

Definition 2.2 (Sayed and Noiri, 2010)

(i) The supra closure of a set A is denoted by clµ(A) and is defined as

clµ(A) = ∩{B: B is a supra closed set and A ⊆ B}.

(ii) The supra interior of a set A is denoted by intµ(A) and defined as

intµ(A) = ∪{B: B is a supra open set and A ⊇ B}.

Definition 2.3 (Mashhour et al., 1983)

Let (X,τ) be a topological spaces and µ be a supra topology on X. We call µ a supra topology associated with τ if τ ⊆ µ.

Definition 2.4 (Andrijevic, 1996)

Let (X,µ) be a supra topological space. A set A is called a supra b-open set if A ⊆ clµ(intµ(A))∪intµ(clµ(A)). The complement of a supra b-open set is called a supra b-closed set.

Definition 2.5 (Arockiarani and Pricilla, 2011a)

A subset A of (X,µ) is called supra generalized b–closed set if bclµ(A) ⊆ U whenever A ⊆ U and U is supra open. The complement of supra generalized b-closed set is supra generalized b-open set.

Definition 2.6 (Arockiarani and Pricilla, 2011b)

A subset A of (X,µ) is called Tµ-closed set if bclµ(A) ⊆ U whenever A ⊆ U and U is gµb-open in (X,µ). The complement of Tµ-closed set is called Tµ-open set.

Definition 2.7 (Arockiarani and Pricilla, 2012)

A subset A of a supra topological space (X,µ) is called supra generalized b-regular closed set if
Let X be a nonempty set and $P(X)$ the power set of X. A subfamily m_X of $P(X)$ is called a minimal structure on X if it satisfies several basic properties and some characterizations of super T$^\mu$-closed sets and super T^μ-open sets on minimal structures.

Definition 2.10 (Popa and Noiri, 2000)

Let X be a nonempty set and m_X a minimal structure on X satisfying property B. For a subset A of X, the following properties hold:

(i) $A \in m_X$ if and only if $m_X \cap int(A) = A$

(ii) A is m_X-closed if and only if $m_X \cap cl(A) = A$

(iii) $m_X \cap int(A)$ is m_X-open and $m_X \cap cl(A)$ is m_X-closed.

Definition 2.11 (Popa and Noiri, 2000)

A minimal structure m_X on a nonempty set X is said to have property B if the union of any family of subsets belongs to m_X.

Lemma 2.12 (Popa and Noiri, 2000)

Let X be a nonempty set and m_X a minimal structure on X satisfying property B. For a subset A of X, the following properties hold:

(i) $A \in m_X$ if and only if $m_X \cap int(A) = A$

(ii) A is m_X-closed if and only if $m_X \cap cl(A) = A$

(iii) $m_X \cap int(A)$ is m_X-open and $m_X \cap cl(A)$ is m_X-closed.

Definition 2.12

Let (X, m_X) be an m-space. A set A is called a mb$^\mu$-open set if $A \subseteq m_X \cap int(m_X \cap int(A)) \cap m_X \cap cl(A)$. The complement of a mb$^\mu$-open set is called a mb$^\mu$-closed set.

Definition 2.13

Let (X, m_X) be an m-space. A set A is called a mb$^\mu$-open set if $A \subseteq m_X \cap int(m_X \cap int(A)) \cap m_X \cap cl(A)$. The complement of a mb$^\mu$-open set is called a mb$^\mu$-closed set.

Definition 2.14

Let (X, m_X) be an m-space. A set A is called a mb$^\mu$-closed set. The complement of a mb$^\mu$-closed set is called a mb$^\mu$-open set.

Definition 2.15

Let (X, m_X) be an m-space. A subset A of X is said to be minimal supra g b-closed if $m_X \cap cl(A) \subseteq G$ whenever $A \subseteq G$ and G is m supra-open.

Definition 2.16

Let (X, m_X) be an m-space. A subset A of X is said to be minimal supra gb-closed if $m_X \cap cl(A) \subseteq G$ whenever $A \subseteq G$ and G is m supra-open.

Definition 2.17

Let (X, m_X) be an m-space. A subset A of X is said to be minimal supra T-closed if $m_X \cap cl(A) \subseteq G$ whenever $A \subseteq G$ and G is m supra-open.

Definition 2.18

Let (X, m_X) be an m-space. A set A is called a mb$^\mu$-open set if $A = m_X \cap int(m_X \cap int(A))$. The complement of a mb$^\mu$-open set is called a mb$^\mu$-closed set.

3. mb$^\mu$-CLOSED SETS IN MINIMAL STRUCTURES

Definition 3.1

Let (X, m_X) be an m-space. A subset A of X is said to be minimal super T$^\mu$-closed if $m_X \cap cl(A) \subseteq G$ whenever $A \subseteq G$ and G is mT$^\mu$-open.

Remark 3.2

Let (X, m_X) be a supra topological space and m_X be minimal structure on X. If $m_X = \mu$, then an mb$^\mu$-closed set is mb$^\mu$-closed set in X.

In this section, let (X, m_X) be a supra topological space and m_X be a minimal structure on X. We obtain several basic properties and some characterizations of mb$^\mu$-closed sets and mb$^\mu$-open sets on m-space.

Theorem 3.3

Let m_X have the property B. A subset A of X is mb$^\mu$-closed in (X, m_X) if $m_X \cap bcl(A) = A$ contains no nonempty mb$^\mu$-closed set in X.

Proof Suppose that F is a nonempty mb$^\mu$-closed subset of $m_X \cap bcl(A) = A$. Now $F \subseteq m_X \cap bcl(A) = A$. Then $F \subseteq m_X \cap bcl(A) \cap A$, since $m_X \cap bcl(A) = m_X \cap bcl(A) \cap A$. Therefore $F \subseteq m_X \cap bcl(A)$ and $F \subseteq A$. Since F is mb$^\mu$-closed set and A is mb$^\mu$-closed, $m_X \cap bcl(A) \subseteq F$. That is $F \subseteq m_X \cap bcl(A)$. Hence $F \subseteq m_X \cap bcl(A) \cap A = F$. That is $F = \emptyset$. Thus $m_X \cap bcl(A) = A$ contains no nonempty mb$^\mu$-closed set.

Conversely, assume that $m_X \cap bcl(A) = A$ contains no nonempty mb$^\mu$-closed set. Let $A \subseteq G$, G is mb$^\mu$-open. Suppose that $m_X \cap bcl(A) = A$ contains no nonempty mb$^\mu$-closed set. Let $A \subseteq G$, G is mb$^\mu$-open. Suppose that $m_X \cap bcl(A)$ is not contained in G. Then $m_X \cap bcl(A) \cap G = \emptyset$. That is $A = A$ is a nonempty mb$^\mu$-closed set.
of \(m_X \cdot bcl(A) - A \), which is a contradiction. Therefore \(m_X \cdot bcl(A) \subseteq G \) and hence \(A \) is \(mbT^\mu \)-closed.

Theorem 3.4

For subsets \(A \) and \(B \) of \(X \), the following properties hold:

(i) If \(A \) is \(m_X \)-supra closed, then \(A \) is \(mbT^\mu \)-closed.

(ii) If \(m_X \) has the property \(B \) and \(A \) is \(mbT^\mu \)-closed and \(mT^\mu \)-open then \(A \) is \(m_X \)-supra closed.

(iii) If \(A \) is \(mbT^\mu \)-closed and \(A \subseteq B \subseteq m_X \cdot bcl(A) \), then \(B \) is \(mbT^\mu \)-closed.

Proof (i) Let \(A \) be an \(m_X \)-supra closed set in \((X,m_X)\). Let \(A \subseteq G \), where \(G \) is \(mT^\mu \)-open in \((X,m_X)\). Since \(A \) is \(m_X \)-supra closed, \(m_X \cdot cl(A) = A \), we know that \(m_X \cdot bcl(A) \subseteq m_X \cdot cl(A) = A \). Therefore \(A \) is \(mbT^\mu \)-closed.

(ii) Since \(A \) is \(mT^\mu \)-open and \(mbT^\mu \)-closed, we have \(m_X \cdot bcl(A) \subseteq A \). Therefore \(A \) is \(m_X \)-supra closed.

(iii) Let \(A \) be \(mbT^\mu \)-closed, \(m_X \cdot bcl(B) - B \subseteq m_X \cdot bcl(A) - A \), and since \(m_X \cdot bcl(A) - A \) contains no empty \(mT^\mu \)-closed set, neither does \(m_X \cdot bcl(B) - B \). By theorem 3.3, the result follows.

Theorem 3.5

Union of two \(mbT^\mu \)-closed sets is \(mbT^\mu \)-closed.

Proof Assume that \(A \) and \(B \) are \(mbT^\mu \)-closed sets in \(X \). Let \(G \) be an \(mT^\mu \)-open set in \(X \) such that \(A \cup B \subseteq G \). Then \(A \subseteq G \) and \(B \subseteq G \). Since \(A \) and \(B \) are \(mbT^\mu \)-closed, \(m_X \cdot bcl(A) \subseteq G \) and \(m_X \cdot bcl(B) \subseteq G \). Hence, \(m_X \cdot bcl(A \cup B) \subseteq m_X \cdot bcl(A) \cup m_X \cdot bcl(B) \subseteq G \). Therefore \(A \cup B \) is \(mbT^\mu \)-closed.

Theorem 3.6

Every \(m_X \)-supra closed set in \(X \) is \(mbT^\mu \)-closed in \(X \).

Proof Let \(G \) be an \(mT^\mu \)-open set such that \(A \subseteq G \). Since \(A \) is \(m_X \)-supra closed, \(m_X \cdot cl(A) = A \), then \(A \subseteq G \). We know that \(m_X \cdot bcl(A) \subseteq m_X \cdot cl(A) \) and \(m_X \cdot bcl(A) \subseteq G \). Therefore \(A \) is \(mbT^\mu \)-closed.

The converse of the above theorem need not be true as seen from the following example.

Example 3.7

Consider the \(m \)-space \(X = \{a,b,c\} \) with minimal structure \(m_X = \{X,\emptyset,\{a\},\{a,b\}\} \) and \(mbT^\mu \)-closed are \(\{X,\emptyset,\{a\},\{a,b\}\} \). The set \(\{b\} \) is \(mbT^\mu \)-closed but not \(m_X \)-supra closed set.

Theorem 3.8

Every \(mbT^\mu \)-closed in \(X \) is \(mg^b \)-closed in \(X \) but not conversely.

Proof Let \(A \subseteq G \) and \(G \) is \(m \)-supra open set in \(X \). We know that \(m \)-supra open set is \(mT^\mu \)-open set. Since \(A \) is \(mbT^\mu \)-closed, we have \(m_X \cdot bcl(A) \subseteq G \). Therefore \(A \) is \(mg^b \)-closed set in \(X \).

The converse of the above theorem need not be true as seen from the following example.

Example 3.9

Consider the \(m \)-space \(X = \{a,b,c\} \) with minimal structure \(m_X = \{X,\emptyset,\{a\}\} \). Suppose that \(m_X \cdot bcl(A) \) is \(mg^b \)-closed but not \(mbT^\mu \)-closed set.

Theorem 3.10

Every \(mbT^\mu \)-closed in \(X \) is \(mg^b \)-closed in \(X \) but not conversely.

Proof Let \(A \subseteq G \) and \(G \) is \(m \)-supra regular open set in \(X \). We know that \(m \)-supra regular open set is \(mT^\mu \)-open set. Since \(A \) is \(mbT^\mu \)-closed, we have \(m_X \cdot bcl(A) \subseteq G \). Therefore \(A \) is \(mg^b \)-closed set in \(X \).

The converse of the above theorem need not be true as seen from the following example.

Example 3.11 Consider the \(m \)-space \(X = \{a,b,c\} \) with minimal structure \(m_X = \{X,\emptyset,\{a\}\} \). Suppose that \(mg^b \)-closed but not \(mbT^\mu \)-closed set.

Theorem 3.12

For each \(x \in X \), \(\{x\} \) is \(mbT^\mu \)-closed in \(X \) or \(\{x\} \) is \(mbT^\mu \)-closed set in \(X \).

Proof If \(\{x\} \) is not \(mbT^\mu \)-closed. Then the only \(mT^\mu \)-open set containing \(\{x\} \) is \(X \). Also, the \(m_X \cdot bcl(\{x\}) \) is contained in \(X \) and hence \(\{x\} \) is \(mbT^\mu \)-closed set in \(X \).

Theorem 3.13

Let \(m_X \) have property B. Let \(A \) be a subset of \(X \), then \(A \) is \(mbT^\mu \)-closed iff \(m_X \cdot bcl(A) \) is not any empty \(m_X \)-supra closed set.

Proof Suppose that \(F \) is nonempty \(mbT^\mu \)-closed subset of \(m_X \cdot bcl(A) \). Now \(F \subseteq m_X \cdot bcl(A) \setminus A \). Then \(F \subseteq m_X \cdot cl(A) \) since \(m_X \cdot bcl(A) \). Therefore \(F \subseteq m_X \cdot cl(A) \) and \(F \subseteq \emptyset \). Since \(F \) is \(mbT^\mu \)-open set and \(A \) is \(mbT^\mu \)-closed, \(m_X \cdot cl(A) \subseteq \emptyset \). That is \(F \subseteq m_X \cdot cl(A) \). Hence \(F \subseteq m_X \cdot cl(A) \) and \(F \subseteq \emptyset \). That is \(F = \emptyset \). Thus \(m_X \cdot cl(A) \) is not any empty \(mbT^\mu \)-closed set.

Conversely, assume that \(m_X \cdot bcl(A) \) is not any empty \(m_X \)-supra closed set. Let \(A \subseteq G \), \(G \) is \(mbT^\mu \)-open. Suppose that \(m_X \cdot bcl(A) \) is not contained in \(G \). Then \(m_X \cdot bcl(A) \cap G \) is a nonempty
mbTu - closed set of m_X-bcl$(A) - A$, which is a contradiction. Therefore m_X-bcl$(A) \subseteq G$ and hence A is mbTu- closed.

Remark 3.14 From the above observation we get the following implications

\[
m_X - \text{Supra closed} \downarrow
\]
\[
m_X - \text{Supra bT-closed} \rightarrow m_X - \text{Supra gb-closed} \downarrow
\]
\[
m_X - \text{Supra gbr-closed}
\]

REFERENCES

