SUPRA bT^{μ} - CLOSED SETS IN MINIMAL STRUCTURES

Krishnaveni, K. and M. Vigneshwaran*

Department of Mathematics, Kongunadu Arts and Science College (Autonomous), Coimbatore. *E.mail: vignesh.mat@gmail.com

ABSTRACT

We introduce a new set called mbT^{μ} - closed set in a supra topological spaces which are defined on a family of sets satisfying some minimal conditions.

Mathematics subject classification: 54A05

Keyword: mbT^µ-closed set

1. INTRODUCTION

In Mashhour *et al.* (1983) introduced Supra topological spaces and studied S-continuous maps and S*-continuous maps . Popa and Noiri (2000) introduced concept of minimal structure on a nonempty set. Also they introduced the notation m_{X^-} open set and m_{X^-} closed set and characterize these sets using m_{X^-} cl and m_{X^-} int operators respectively.

In this paper, we introduced a new class $m_{X^{-}}$ structures set called minimally bT^{μ} - closed set called as mbT^{μ} - closed set in supra topological spaces. Further, we study the properties of mbT^{μ} - closed sets in supra topological spaces.

2. PRELIMINARIES

Let (X,μ) be a supra topological space and A be a subset of X. The closure of A and interior of A are denoted by $cl^{\mu}(A)$ and $int^{\mu}(A)$ respectively in supra topological spaces. Let (X,m_X) be an m-space where X is a nonempty set and m_X is the minimal structure defined on X. The m_X - cl^{μ} and m_X - int^{μ} denotes the m_X closure and m_X - interior on (X,m_X) respectively on supra topological space.

Definition 2.1 (Mashhour *et al.,* 1983; Sayed and Noiri, 2010)

A subfamily of μ of X is said to be a supra topology on X, if

(i) Χ,φ∈μ

(ii) if $Ai \in \mu$ for all $i \in J$ then $\cup Ai \in \mu$.

The pair (X,μ) is called supra topological space. The elements of μ are called supra open sets in (X,μ) and complement of a supra open set is called a supra closed set. Definition2.2 (Sayed and Noiri, 2010)

(i) The supra closure of a set A is denoted by $cl\mu(A)$ and is defined as

 $cl\mu(A) = \cap \{B:B \text{ is a supra closed set and } A \subset B\}.$

(ii) The supra interior of a set A is denoted by $int\mu(A)$ and defined as

int $\mu(A) = \bigcup \{B: B \text{ is a supra open set and } A \supseteq B \}.$

Definition 2.3 (Mashhour et al., 1983)

Let (X,τ) be a topological spaces and μ be a supra topology on X. We call μ a supra topology associated with τ if $\tau \subset \mu$.

Definition 2.4 (Andrijevic, 1996)

Let (X,μ) be a supra topological space. A set A is called a supra b-open set if $A\subseteq cl\mu(int\mu(A)) \cup int\mu(cl\mu(A))$. The complement of a supra b-open set is called a supra b-closed set.

Definition 2.5 (Arockiarani and Pricilla, 2011a)

Let (X,μ) be a supra topological space . A set A of X is called supra generalized b – closed set (simply gµb – closed) if bclµ(A) \subseteq U whenever A \subseteq U and U is supra open. The complement of supra generalized b-closed set is supra generalized b-open set.

Definition 2.6 (Arockiarani and Pricilla, 2011b)

A subset A of (X,μ) is called T μ -closed set if bcl $\mu(A) \subseteq U$ whenever $A \subseteq U$ and U is g μ b- open in (X,μ) . The complement of T μ -closed set is called T μ - open set.

Definition 2.7 (Arockiarani and Pricilla, 2012)

A subset A of a supra topological space (X,μ) is called supra generalized b-regular closed set if

 $bcl\mu(A) \subseteq U$ and whenever $A \subseteq U$ and U is supra regular open of (X,μ) . The complement of supra generalized b-regular closed set is called supra generalized b-regular open set.

Definition 2.8 (Krishnaveni and Vigneshwaran, 2013)

A subset A of a supra topological space (X,μ) is called bT μ -closed set if bcl $\mu(A) \subseteq U$ whenever $A \subseteq U$ and U is T μ -open in (X,μ) .The complement of supra bT μ -closed set is called supra bT μ -open set.

Remark 2.9 (Krishnaveni and Vigneshwaran, 2013) The following relations are well known

> Supra closed \downarrow Supra bT-closed \rightarrow supra gb-closed \downarrow Supra gbr-closed

Definition 2.10 (Popa and Noiri, 2000)

Let X be a nonempty set and P(X) the power set of X. A subfamily m_X of P(X) is called a minimal structure (m- structure) on X if $\varphi \in m_X$ and X $\in m_X$. The pairs (X, m_X) is called a minimal space (or m-space).

Definition 2.11 (Popa and Noiri, 2000)

A minimal structure m_X on a nonempty set X is said to have property B if the union of any family of subsets belongs to m_X .

Lemma 2.12 (Popa and Noiri, 2000)

Let X be a nonempty set and m_X a minimal structure on X satisfying property B. For a subset A of X, the following properties hold:

- (i) $A \in m_X$ if and only if m_X int(A) = A
- (ii) A is m_X -closed if and only if m_X -cl(A) = A
- (iii) m_X -int(A) ϵm_X -open and m_X -cl(A) is m_X -closed.

Definition 2.13

Let (X,m_X) be an m-space. A set A is called a mb^{μ} -open set if $A \subseteq m_X$ -cl $\mu(m_X$ -int $\mu(A)) \cup m_X$ -int $\mu(m_X$ -cl $\mu(A)$). The complement of a mb^{μ} -open set is called a mb^{μ} -closed set.

Definition 2.14

Let (X,m_X) be an m-space. A set A is called a m supra regular-open set if A= m_X - $cl\mu(m_X$ - $int\mu(A)$). The complement of a m supra regular-open set is called a m supra regular-closed set.

Definition 2.15

Let (X,m_X) be an m-space. A subset A of X is said to be minimal supra g b-closed(mg^µb- closed) if m_Xbcl^µ(A) \subseteq G whenever A \subseteq G and G is m supra-open.

Definition 2.16

Let (X,m_X) be an m-space. A subset A of X is said to be minimal supra gbr-closed (mg^µbr- closed) if m_X - bcl^µ(A) \subseteq G whenever A \subseteq G and G is m supra regular-open.

Definition 2.17

Let (X,m_X) be an m-space. A subset A of X is said to be minimal supra T-closed(mT^{μ}- closed) if m_X bcl^{μ}(A) \subseteq G whenever A \subseteq G and G is m supra gbopen.

Definition 2.18

Let (X,m_X) be an m-space. A set A is called a m supra regular open set if $A = m_X-int\mu(m_X-cl\mu(A))$. The complement of a m supra regular open set is called a m supra regular closed set.

3. mbT^µ-CLOSED SETS IN MINIMAL STRUCTURES

Definition 3.1

Let (X,m_X) be an m-space. A subset A of X is said to be minimal supra bT closed (mbT^{μ}- closed) if m_Xbcl^{μ}(A) \subseteq G whenever A \subseteq G and G is mT^{μ}-open.

Remark 3.2

Let(X, μ) be a supra topological space and m_X be minimal structure on X. If $m_X = \mu$, then an mbT^{μ}-closed set is bT^{μ}-closed set in X.

In this section, let (X,μ) be a supra topological space and m_X be an m-structure on X. We obtain several basic properties and some characterizations of mbT^{μ} - closed sets and mbT^{μ} - open sets on m-space.

Theorem 3.3

Let m_X have the property B. A subset A of X is mbT^{μ} - closed in (X,m_X) iff m_X -bcl^{μ}(A) –A contains no non empty mT^{μ} - closed set in X.

Proof Suppose that F is a nonempty mT^{μ} -closed subset of m_X -bcl^{μ}(A) – A. Now $F \subseteq m_X$ -bcl^{μ}(A) – A. Then $F \subseteq m_X$ -bcl^{μ}(A) ∩ A^c, since m_X -bcl^{μ}(A) – A = m_X -bcl^{μ}(A) ∩ A^c. Therefore $F \subseteq m_X$ -bcl^{μ}(A) and $F \subseteq A^c$. Since F^c is mT^{μ} - open set and A is mbT^{μ} - closed, m_X -bcl^{μ}(A) $\subseteq F^c$. That is $F \subseteq m_X$ -bcl^{μ}(A)^c. Hence $F \subseteq m_X$ -bcl^{μ}(A) ∩ m_X -bcl^{μ}(A)^c = φ . That is $F = \varphi$. Thus m_X -bcl^{μ}(A) – A contains no nonempty mT^{μ} - closed set.

Conversely, assume that m_X -bcl^µ(A) – A contains no nonempty mT^{μ} - closed set. Let A \subseteq G, G is mT^{μ} open. Suppose that m_X -bcl^µ(A) is not contained in G. Then m_X -bcl^µ(A) \cap G^c is a nonempty mT^{μ} - closed set of m_X -bcl^{μ}(A) – A, which is a contradiction. Therefore m_X -bcl^{μ}(A) \subseteq G and hence A is mbT^{μ} - closed.

Theorem 3.4

For subsets A and B of X, the following properties hold:

- (i) If A is m_X -supra closed, then A is mbT^{μ} -closed.
- (ii) If m_X has the property B and A is mbT^{μ} -closed and mT^{μ} -open then A is m_X -supra closed.
- (iii) If A is mbT^{μ}-closed and A \subseteq B \subseteq m_X-bcl^{μ}(A), then B is mbT^{μ}-closed.

Proof (i) Let A be an m_X -supra closed set in (X,m_X) . Let $A \subseteq G$, where G is mT^{μ} -open in (X,m_X) . Since A is m_X -supra closed, m_X -cl^{μ}(A) = A,we know that m_X -bcl^{μ}(A) $\subseteq m_X$ -cl^{μ}(A) = A, m_X -bcl^{μ}(A) \subseteq G. Therefore A is mbT^{μ}-closed.

(ii) Since A is mT^{μ} -open and mbT^{μ} -closed, we have m_X -bcl^{μ}(A) \subseteq A. Therefore A is m_X -supra closed.

(iii) Let A is mbT^{μ} -closed, m_X -bcl^{μ}(B) – B $\subseteq m_X$ -bcl^{μ}(A) – A, and since m_X -bcl^{μ}(A) – A contains no nonempty mT^{μ} - closed set, neither does m_X -bcl^{μ}(B)-B. By theorem 3.3, the result follows.

Theorem 3.5

Union of two mbT^{μ}-closed sets is mbT^{μ}-closed.

Proof Assume that A and B are mbT^{μ_-} closed sets in X. Let G be an mT^{μ_-} open set in X such that $A \cup B \subseteq G$. Then A $\subseteq G$ and B $\subseteq G$. Since A and B are mbT^{μ_-} closed, m_X - $bcl^{\mu}(A) \subseteq G$ and m_X - $bcl^{\mu}(B) \subseteq G$. Hence, m_X $bcl^{\mu}(A \cup B) \subseteq m_X$ - $bcl^{\mu}(A) \cup m_X$ - $bcl^{\mu}(B) \subseteq G$. Therefore $A \cup B$ is mbT^{μ_-} closed.

Theorem 3.6

Every m_X -supra closed set in X is mbT^{μ} -closed in X.

Proof Let G be an mT^{μ} - open set such that $A \subseteq G$. Since A is m_X - supra closed, m_x -cl^{μ}(A) = A, then - cl^{μ}(A) \subseteq G. We know that m_X -bcl^{μ}(A) $\subseteq m_X$ -cl^{μ}(A), then m_X -bcl^{μ}(A) \subseteq G. Therefore A is mbT^{μ}-closed.

The converse of the above theorem need not be true as seen from the following example.

Example 3.7

 $\label{eq:consider the m-space X = {a,b,c} with minimal structure m_X = {X,\phi,{a},{a,b}}. mbT^\mu\mbox{-closed are { X,\phi, }}$

{b}, {c},{b,c}}. The set {b} is mbT^{μ} -closed but not m_X -supra closed set.

Theorem 3.8

Every mbT^{μ} -closed in X is $mg^{\mu}b$ -closed in X but not conversely.

Proof Let $A \subseteq G$ and G is m- supra open set in X. We know that m-supra open set is mT^{μ} - open set. since A is mbT^{μ} - closed,we have m_X -bcl^{μ}(A) \subseteq G. Therefore A is mg^{μ}b-closed set in X.

The converse of the above theorem need not be true as seen from the following example.

Example 3.9

Consider the m-space X = {a,b,c} with minimal structure $m_X = \{X,\phi,\{a\}\}$. $mg^{\mu}b$ - closed are { X, $\phi,\{b\}$, {c}, {a,b},{a,c},{b,c}} and mbT^{μ} - closed are { X, $\phi,\{b\},\{c\},\{b,c\}\}$. The set {a,b} is $mg^{\mu}b$ - closed but not mbT^{μ} - closed set.

Theorem 3.10

Every mbT^{μ} -closed in X is $mg^{\mu}br$ -closed in X but not conversely.

Proof

Let $A \subseteq G$ and G is m- supra regular open set in X. We know that m-supra regular open set is mT^{μ} open set. Since A is mbT^{μ} - closed, we have m_X -bcl^{μ}(A) \subseteq G. Therefore A is $mg^{\mu}br$ -closed set in X.

The converse of the above theorem need not be true as seen from the following example.

Example 3.11 Consider the m-space $X = \{a,b,c\}$ with minimal structure $m_X = \{X,\phi,\{a\}\}$. The set $\{a,b\}$ is mg^µbr- closed but not mbT^µ- closed set.

Theorem 3.12

For each x ϵX , {x} is mT^{μ -} closed in X or {x} is mbT^{μ -} closed set in X.

Proof If {x} is not mT^{μ} - closed. Then the only mT^{μ} -open set containing {x}^c in X. Also, the m_X -bcl^{μ}({x})^c is contained in X and hence {x} is mbT^{μ} - closed set in X.

Theorem 3.13

Let m_X have property B. Let A be a subset of X ,then A is mbT^{μ -} closed iff m_X -bcl^{μ}(A)-A does not contain any nonempty m_X -supra closed set.

Proof Suppose that F is nonempty mbT^{µ-} closed subset of m_X-bcl^µ(A)-A. Now F \subseteq m_X-bcl^µ(A) – A. Then F \subseteq m_X-bcl^µ(A)∩A^c, since m_X-bcl^µ(A) – A = m_X-bcl^µ(A)∩A^c. Therefore F \subseteq m_X-bcl^µ(A) and F \subseteq A^c. Since F^c is mbT^{µ-} open set and A is mbT^µ - closed, m_X-bcl^µ(A) \subseteq F^c. That is F \subseteq [m \star bcl^µ(A)]^c. Hence F \subseteq m^X-bcl^µ(A)∩ [m_X-bcl^µ(A)]^c = φ . That is F = φ . Thus m_X-bcl^µ(A) – A contains no nonempty mbT^{µ-} closed set.

Conversely, assume that m_X -bcl^µ(A) – A contains no nonempty m_X - supra closed set. Let A \subseteq G, G is mbT^µ- open. Suppose that m_X -bcl^µ(A) is not contained in G. Then m_X -bcl^µ(A) ∩G^c is a nonempty

 mbT^{μ} - closed set of $m_X\text{-}bcl^{\mu}(A)$ – A, which is a contradiction. Therefore $m_X\text{-}bcl^{\mu}(A)\subseteq G$ and hence A is $mbT^{\mu}\text{-}$ closed.

Remark 3.14 From the above observation we get the following implications

 m_{χ}^{-} Supra closed

$$\downarrow$$

 m_X - Supra bT-closed $\rightarrow m_X$ – Supra gb-closed \downarrow m_X -Supra gbr-closed

REFERENCES

Andrijevic D., (1996).On b-open sets, mat.Vesnik **48**(1-2): 59-64.

- Arockiarani I. and M.T. Pricilla, (2012). On generalized b-regular closed sets, In supra topological spaces, *Asian J Curr Eng Math* **1**(1): 1-4.
- Arockiarani, I. And M.T. Pricilla, (2011b). On supra Tclosed sets, *Int J Mathematics Arch* **2**(8): 1376-1380.

- Arockiarani, I. and M.T. Pricilla, (2011a). On supra generalized b-closed sets. *Antartica J Math* **8**.
- Krishnaveni, K. and M. Vigneshwaran, (2013). On bT-Closed sets in supra topological Spaces, *Int J Math Arch* **4**(2): 1-6.
- Mashhour, A.S., A.A. Allam, F.S. Mohamoud and F.H. Khedr, (1983). On supra Topological spaces, *Indian J Pure Appl Math*No.4, 14(1983),502-510.
- Noiri, T., (2006). 11th meetings on topological spaces Theory and its Applications, Fukuoka University Seminar House. 1-9.
- Parimelazhagan, R., K. Balachandran and N. Nagaveni, (2009). On Weakly Generalized Closed Sets in Minimal Structure Int J Contemp Math Sci 4(27): 1335-1343.
- Popa V. And T. Noiri, (2000). On M-continuous functions, Anal.Univ. Dunarea De Jos Galati.Ser.Mat.Fiz.Mec.Teor.(2). **18**(23): 31-41.
- Sayed, O.R. and T. Noiri, (2010). On b-open sets and supra b-Continuity on Topological spaces, *Eur J Pure Appl Math* **3**(2): 295-302.