Kong. Res. J. 2(1): 47-49, 2015 Kongunadu Arts and Science College, Coimbatore.

ON TOTALLY SUPRA N-CONTINUOUS FUNCTION AND TOTALLY SUPRA N-CLOSED MAP

Vidyarani, L. and M. Vigneshwaran*

Department of Mathematics, Kongunadu Arts and Science College(Autonomous), Coimbatore-641029, Tamilnadu, India.

*E.mail: vignesh.mat@gmail.com

ABSTRACT

In this paper, we introduce the concept of totally supra N-continuous function and totally supra N-closed map and investigated the relationship of these functions with other functions. Mathematics subject Classification: 54C05, 54C10.

Keywords: Totally supra N-continuous function, totally supra N-closed map.

1. INTRODUCTION

In 1983, Mashhour *et al.* (1983) introduced the notion of supra topological spaces and studied, continuous functions and s^* -continuous functions. Jamal M.Mustafa (2012) introduced and studies a class of functions called totally supra b-continuous and slightly supra b-continuous functions in supra topological spaces.

In this paper, we introduce the concept of totally supra N-continuous function and totally supra N-closed map and investigated the relationship of these functions with other functions in supra topological spaces.

2. PRELIMINARIES

Definition 2.1 (Mashhour et al., 1983)

A subfamily $\boldsymbol{\mu}$ of X is said to be supra topology on X if

$$(i) X, \phi \in \mu$$

 $A_i \in \mu \ \forall i \in j$ then $\bigcup A_i \in \mu$. The pair (X, μ) is called supra topological space.

The element of μ are called supra open sets in (X, μ) and the complement of supra

open set is called supra closed sets and it is denoted by μ^{c}

Definition 2.2 (Mashhour et al., 1983)

The supra closure of a set A is denoted by $cl\mu$ (A), and is defined as supra $cl(A) = \cap \{B : B$ is supra closed and $A \subseteq B\}$.

The supra interior of a set A is denoted by $int\mu(A)$, and is defined as $supraint(A) = \cup \{B : B \text{ is supra open and } A \supseteq B\}.$

Definition 2.3 (Mashhour *et al.*, 1983) Let (X, τ) be a topological space and μ be a supra topology on X. We call μ a supra topology associated with τ , if $\tau \subseteq \mu$.

Definition 2.4 Let (X, μ) be a supra topological space. A set A of X is called

(i) supra semi- open set (Levine, 1991), if $A \subseteq cl\mu(int\mu(A))$.

(ii) supra α -open set (Devi *et al.*, 2008), if $A \subseteq int\mu(cl\mu(int\mu(A)))$.

(iii) supra Ω closed set (Noiri and Sayed, 2005), if $scl\mu(A) \subseteq int\mu$ (U),whenever $A \subseteq U$, U is supra open set.

(iv) supra N-closed set (Vidyarani and Vigneshwaran, 2013), if $\Omega cl\mu(A) \subseteq U$, whenever $A \subseteq U$, U is supra α open set.

The complement of above supra closed set is supra open and vice versa.

Definition 2.5

A map f:(X, τ) \rightarrow (Y, σ) is said to be

- (i) supra N-continuous (Vidyarani and Vigneshwaran, 2013a), if $f^{-1}(V)$ is supra N-closed in (X, τ) for every supra closed set V of (Y, σ).
- (ii) Perfectly supra N-continuous (Vidyarani and Vigneshwaran, 2013a), if $f^{-1}(V)$ is supra clopen in (X, τ) for every supra N-closed set V of (Y, σ).
- (iii) strongly supra N-continuous (Vidyarani and Vigneshwaran, 2013a), if $f^{-1}(V)$ is supra closed in (X, τ) for every supra N-closed set V of (Y, σ).
- (iv) supra N-closed map (Vidyarani and Vigneshwaran, 2013b), if f(V) is supra N-closed in (Y, σ) for every supra closed set V of (X, τ) .

(v) strongly supra N-closed map (Vidyarani and Vigneshwaran, 2013b), if f(V) is supra N-closed in (Y, σ) for every supra N-closed set V of (X, τ) .

3. TOTALLY SUPRA N-CONTINUOUS FUNCTIONS

Definition 3.1 A map $f:(X, \tau) \rightarrow (Y, \sigma)$ is called totally supra continuous function if the inverse image of every supra open set in (Y, σ) is supra clopen in (X, τ) .

Definition 3.2 A map $f:(X, \tau) \rightarrow (Y, \sigma)$ is called totally supra N-continuous function if the inverse image of every supra open set in (Y, σ) is supra N-clopen in (X, τ) .

Theorem 3.3 Every strongly supra N-continuous function is totally supra N-continuous function.

Proof Let $f:(X, \tau) \to (Y, \sigma)$ be a strongly supra Ncontinuous function. Let V be supra open set in (Y, σ) . Then V is supra N-open set in (Y, σ) , since every supra open set is supra N-open set. Since f is strongly supra N-continuous function $f^{-1}(V)$ is both supra open and supra closed in (X, τ) . Implies $f^{-1}(V)$ is supra N-clopen in (X, τ) . Therefore f is totally supra N-continuous function.

The converse of the above theorem need not be true. It is shown by the following example.

Example 3.4 Let $X=Y=\{a, b, c\}$ and $\tau = \{X, \varphi, \{a\},\{b\},\{a,b\},\{b,c\}\}, \sigma = \{Y, \varphi, \{a\}\}$. N-closed set in (X, τ) are $\{X, \varphi, \{a\},\{b\},\{a,b\},\{b,c\}\}$. N-closed set in (Y, σ) are $\{Y, \varphi, \{a\},\{b\},\{c\},\{a,b\},\{b,c\}\}$. N-closed set in (Y, σ) are $\{Y, \varphi, \{a\},\{b\},\{c\},\{a,b\},\{b,c\},\{a,c\}\}$. f: $(X, \tau) \rightarrow (Y, \sigma)$ be the function defined by f(a)=a, f(b)=c, f(c)=b. Here f is totally supra N-continuous but not strongly supra N-continuous, since V= $\{a,c\}$ is supra N-closed in (Y, σ) but f $^{-1}(\{a,c\}) = \{a,b\}$ is supra open but not supra closed set in (X, τ) .

Theorem 3.5 Every totally supra N-continuous function is supra N-continuous function.

Proof Let $f:(X, \tau) \rightarrow (Y, \sigma)$ be a totally supra Ncontinuous function. Let V be supra open set in (Y, σ) . Since f is totally supra N-continuous function, then f⁻¹(V) is supra N-clopen in (X, τ) . Implies f⁻¹(V) is supra N-open in (X, τ) . Therefore f is supra Ncontinuous function.

The converse of the above theorem need not be true. It is shown by the following example.

Example 3.6 Let X=Y={a, b, c} and $\tau = \{X, \varphi, \{a\}, \{b\}, \{a,b\}, \{b, c\}\}$, $\sigma = \{Y, \varphi, \{a\}, \{b,c\}\}$. N-closed set in (X, τ) are $\{X, \varphi, \{a\}, \{b\}, \{a,b\}, \{b,c\}\}$. N-closed set in (Y, σ) are $\{Y, \varphi, \{a\}, \{b\}, \{c\}, \{a,b\}, \{b,c\}\}$. N-closed set in (Y, σ) are $\{Y, \varphi, \{a\}, \{b\}, \{c\}, \{a,b\}, \{b,c\}\}$. N-closed set in (Y, σ) are $\{Y, \varphi, \{a\}, \{b\}, \{c\}, \{a,b\}, \{b,c\}\}$. N-closed set in (Y, σ) are the function defined by f(a)=c, f(b)=b, f(c)=a. Here f is supra N-continuous but not

totally supra N-continuous, since V={a} is supra open in (Y, σ) but f⁻¹({a}) = {c} is supra N-closed but not supra N-open set in (X, τ).

Theorem 3.7 Every totally supra continuous function is supra N-continuous function.

Proof Let $f:(X, \tau) \to (Y, \sigma)$ be a totally supra continuous function. Let V be supra open set in (Y, σ) . Since f is totally supra continuous function, then f $^{-1}(V)$ is supra clopen in (X, τ) . Implies f $^{-1}(V)$ is supra N-clopen in (X, τ) . Hence f $^{-1}(V)$ is supra N-open in (X, τ) . Therefore f is supra N-continuous function.

The converse of the above theorem need not be true. It is shown by the following example.

Example 3.8 Let $X=Y=\{a, b, c\}$ and $\tau = \{X, \varphi, \{a\},\{b\},\{a,b\},\{b, c\}\}, \sigma = \{Y, \varphi, \{a\},\{b,c\}\}$. N-closed set in (X, τ) are $\{X, \varphi, \{a\},\{b\},\{a,b\},\{b,c\}\}$. N-closed set in (Y, σ) are $\{Y, \varphi, \{a\},\{b\},\{c\},\{a,b\},\{b,c\},\{a,c\}\}$. f: $(X, \tau) \rightarrow (Y, \sigma)$ be the function defined by f(a)=c, f(b)=b, f(c)=a. Here f is supra N-continuous but not totally supra continuous, since V= $\{b,c\}$ is supra open in (Y, σ) but f $^{-1}(\{b,c\}) = \{a,b\}$ is supra open but not supra closed set in (X, τ) .

Theorem 3.9 Every totally supra continuous function is totally supra N-continuous function.

Proof Let $f:(X, \tau) \to (Y, \sigma)$ be a totally supra continuous function. Let V be supra open set in (Y, σ) . Since f is totally supra continuous function, then f $^{-1}(V)$ is supra clopen in (X, τ) . Implies f $^{-1}(V)$ is supra N-clopen in (X, τ) . Therefore f is totally supra N-continuous function.

The converse of the above theorem need not be true. It is shown by the following example.

Example 3.10 Let X=Y={a, b, c} and $\tau = \{X, \varphi, \{a\}\}, \sigma = \{Y, \varphi, \{a\}, \{b\}, \{a,b\}, \{b,c\}\}$. N-closed set in (X, τ) are $\{X, \varphi, \{a\}, \{b\}, \{c\}, \{a,b\}, \{b, c\}, \{a,c\}\}$. N-closed set in (Y, σ) are $\{Y, \varphi, \{a\}, \{b\}, \{b, c\}, \{a,c\}\}$. N-closed set in (Y, σ) are $\{Y, \varphi, \{a\}, \{b\}, \{b, c\}, \{a,c\}\}$. Solve the function defined by f(a)=b, f(b)=a, f(c)=c. Here f is totally supra N-continuous but not totally supra continuous, since V={a,b} is supra open in (Y, σ) but f⁻¹({a,b}) = {a,b} is not supra clopen set in (X, τ) .

Theorem 3.11 If $f:(X, \tau) \to (Y, \sigma)$ is totally supra Ncontinuous and $g: (Y, \sigma) \to (Z,\eta)$ is supra continuous then gof: $(X, \tau) \to (Z,\eta)$ is totally supra N-continuous.

Proof Let V be supra open set in Z. Since g is supra continuous, then $g^{-1}(V)$ is supra open set in Y. Since f is totally supra N-continuous, then $f^{-1}(g^{-1}(V))$ is supra N-clopen in X. Hence gof is totally supra N-continuous.

Theorem 3.12 If $f:(X, \tau) \to (Y, \sigma)$ is perfectly supra N-continuous and g: $(Y, \sigma) \to (Z,\eta)$ is totally supra N-continuous then gof: $(X, \tau) \to (Z,\eta)$ is totally supra N-continuous.

Proof Let V be supra open set in Z. Since g is totally supra N-continuous, then $g^{-1}(V)$ is supra N-closed and supra N-open set in Y. Since f is perfectly supra N-continuous, then $f^{-1}g^{-1}(V)$ is supra clopen in X. Implies $f^{-1}g^{-1}(V)$ is supra N-clopen in X. Hence gof is totally supra N-continuous.

4. TOTALLY SUPRA N-CLOSED MAP

Definition 4.1 A map $f:(X, \tau) \rightarrow (Y, \sigma)$ is said to be totally supra N-closed map, if f(V) is supra clopen in (Y, σ) for every supra N-closed set V of (X, τ) .

Theorem 4.2 Every totally supra N-closed map is supra N-closed map.

Proof Let $f:(X, \tau) \rightarrow (Y, \sigma)$ be a totally supra Nclosed map. Let V be supra closed set in (X, τ) , then V is supra N-closed set in (X, τ) , since every supra closed set is supra N-closed set. Since f is totally supra N-closed map, then f(V) is supra clopen in (Y, σ) . Implies f(V) is supra closed in (Y, σ) . Therefore f(V) is supra N-closed in (Y, σ) . Therefore f is supra N-closed map.

The converse of the above theorem need not be true. It is shown by the following example.

Example 4.3 Let X=Y={a, b, c} and $\tau = \{X, \varphi, \{a,b\}\}, \sigma = \{Y, \varphi, \{a,b\}, \{b,c\}\}$. N-closed set in (X, τ) are $\{X, \varphi, \{c\}, \{a,c\}, \{b, c\}\}$. N-closed set in (Y, σ) are $\{Y, \varphi, \{a\}, \{c\}, \{a,c\}\}$. f: $(X, \tau) \rightarrow (Y, \sigma)$ be the function defined by f(a)=c, f(b)=b, f(c)=a. Here f is supra N-closed map but not totally supra N-closed map, since V={b,c} is supra N-closed in (X, τ) but f ({b,c}) = {a,b} is supra open but not supra closed set in (Y, σ) .

Theorem 4.4 Every totally supra N-closed map is strongly supra N-closed map.

Proof Let $f:(X, \tau) \rightarrow (Y, \sigma)$ be a totally supra Nclosed map. Let V be supra N-closed set in (X, τ) . Since f is totally supra N-closed map, then f(V) is supra clopen in (Y, σ) . Implies f(V) is supra closed in (Y, σ) . Therefore f(V) is supra N-closed in (Y, σ) . Therefore f is strongly supra N-closed map.

The converse of the above theorem need not be true. It is shown by the following example.

Example 4.5 Let X=Y={a, b, c} and $\tau = \{X, \varphi, \{a\}, \{a,b\}\}$, $\sigma = \{Y, \varphi, \{a\}, \{c\}, \{a,c\}\}$. N-closed set in (X, τ) are $\{X, \varphi, \{b\}, \{c\}, \{a,c\}, \{b, c\}\}$. N-closed set in (Y, σ) are $\{Y, \varphi, \{a\}, \{b\}, \{c\}, \{a,b\}, \{b,c\}\}$. f: $(X, \tau) \rightarrow (Y, \sigma)$ be the function defined by f(a)=a, f(b)=c, f(c)=b. Here f is strongly supra N-closed map but not totally supra N-closed map, since V={b} is supra N-closed in (X, τ) but f ({b}) = {c} is supra open but not supra closed set in (Y, σ) .

Theorem 4.6 If $f:(X, \tau) \to (Y, \sigma)$ is totally supra Nclosed map and $g: (Y, \sigma) \to (Z,\eta)$ is totally supra Nclosed map then gof: $(X, \tau) \to (Z,\eta)$ is totally supra Nclosed map.

Proof Let V be supra N-closed set in X, then f(V) is supra clopen in Y, since f is totally supra N-closed map. Implies f(V) is supra closed in Y. Then f(V) is supra N-closed in Y, since every supra closed set is supra N-closed set. Since g is totally supra N-closed map g(f(V)) is supra clopen in Z. Hence gof is totally supra N-closed map.

REFERENCES

- Devi, R., S. Sampathkumar and M. Caldas, (2008). On supra α open sets and sα-continuous maps, *Gen. Math.* **16**(2): 77-84.
- Jamal M. Mustafa, (2012). Totally supra b-continuous and slightly supra b-continuous functions, stud. *Univ. Babes. Bolyai Math.* 57(1): 135-144.
- Levine, N., (1991). Semi-open sets and Semicontinuity in topological spaces, *Amer. Math.* **12**: 5-13.
- Mashhour, A.S., A.A. Allam, F.S. Mahmoud and F.H. Khedr, (1983). On supra topological spaces, *Indian J. Pure and Appl.Math.***14**(A): 502-510.
- Noiri, T. and O.R. Sayed, (2005). On Ω closed sets and Ω s closed sets in topological spaces, *Acta Math.*, **4**:307-318.
- Vidyarani, L. and M. Vigneshwaran, (2013). N-Homeomorphism and N*-Homeomorphism in supra topological spaces. *Int. J. Math. Stat. Inv.* **1**(2): 79-83.
- Vidyarani, L. and M. Vigneshwaran, (2013a). Some forms of N-closed maps in supra Topological spaces. *IOSR J. Math.* **6**(4): 13-17.
- Vidyarani, L. and M. Vigneshwaran, (2013b). On supra N-closed and sN-closed sets in supra Topological spaces. *Int. J. Math. Arch.* **4**(2): 255-259.