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Abstract

This paper aims to investigate the concepts of connectedness and compactness to soft grill topological

space (X, , ,A). The concepts of { —

connected sets, { —
introduced in soft topological spaces with soft grill. Furthermore, we use { —

separated sets, and { — compactness are
closed sets to refine existing

theorems, and we illustrate the remarks with a variety of cases.
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1. Introduction

Soft grill topological spaces were first
formulated by Rodyna. A et-al[7,8]. Subsequently,
the idea of soft generalized closed sets in the setting
of soft grill topological spaces was explored in [1]. In
this paper, we aim to introduce the concept of soft
{ — connectedness and soft { — compactness
has been investigated its essential characteristics in
depth.

2. Preliminaries
2.1 Definition[8]

A non empty collection S(X, A) of soft sets
over X is called a soft grill, if the following conditions
hold:

)] If A and A, Which implies
B .
(i) If A A , which implies 4
or a .

The quadruplet (X,, , A, ) is said to be soft grill
topological space.

2.2 Definition[1]

Let { be a soft grill over a soft topological
space ( , A). A soft set  is called
{ generalized closed set (briefly { — closed set), if

¢ ») , whenever g and is soft
openin( , ,A). The complement of such set will
be called { — openset(resp.{ - open set).

connected set, soft { — separated, soft { —

2.3 Definition[10]

A bijection f: (X,t,E) = (Y,0,K) is called Soft
homeomorphism if f is both Soft continuous and Soft
open map.

2.4 Definition[9]

A soft topological space (X, ,A) is soft compact
if each cover of X by a soft open sets has a finite
subcover.

2.5 Definition[9]

Let be a soft grill topological space (X, ,E). A
soft set F is called soft compact if for every cover
{ / '\ }of Fby asoft open sets, there exists a

finite subset g of suchthat( — o ) C.

2.6 Definition[6]

A non empty soft subsets (F,E), (G.E) of a soft
topological spaces (X, ,A) are said to be soft
separated sets if cI(F, E) n (G,E)= (F,E) n cl(GE)= .

2.7 Definition[6]

A soft topological space (X, ,A) is said to be
soft connected if cannot be expressed as the soft
union of two soft separated sets (F,A), (G,A) in
(X, ,A). Otherwise , (X, ,A) is said to be soft
disconnected

3.Soft COMPACTNESS SOFT GRILL
TOPOLOGICAL SPACES

In this section, we define a novel category of
soft generalized compactness within the framework
of soft grills as follows:
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3.1 Definition
An soft grill topological space (X, ,{,A) is
called { - compactifevery { - open cover {
/ A} of (X, ,C,A), there exists a finite subset
Ay of Asuchthat( — Ao ) C.

3.2 Example
Let X ={“ll M2, “3} and A ={G1, GZ}ﬁ

{ v Klv K2| K3v K4v K5| KGY K7| K8v KQY KlOY Kll| KlZ}'
and

(s={P1, P2, P3, P4, Ps, Ps: P7: Pg, X}, where Ky, Ky, K, Ky,
K5' KG! K7' Kg, KQ' KlOﬁ Kllﬁ KlZ' P1, P2, P3, P4, Ps, Pe: P7,
pg are soft subsets over X , we get the following
Ki = {{U1}| {Ul}}:

K2={{U2}: {Uz}},

Ks = {{v1, M2} (M1, 23}

Ka = {{u2, M3}, {12, bs}},

Ks = {{UL Hs}, {M1, U3}},

Ks = {{M3}, {b3}},

Ky = {{Ul}| {Uz}},

Ks = {{H1, M2}, {H2}},

Ko = {{“1}1 {Us}},

Kio = {{H1, M2}, {H1, bs}},

K11 = {{b1, Ms} (b1, W23}

Kio = {{b2} {H1, us}},

P1 = {{H1, M2} (b1, H3l},

P2 = {{ua} {u}}

pP3 = {{U2}| {Uz}},

Pa = {1, M2}, {M1, M3},

ps = {{u1}, {M2, u3}},

Pe = {{u1}, (M1, b3}

p7 = {{b1, M2} {Hal}

p8 = { ' {“ll U3}},
Z - ( ):{ ) vp1|p2;p3;p4};
- (H)=t- ()X
So (X, ,{,A)isasoft{ - compact.
3.3 Theorem

Every soft compact topological space (X, ,A)
issoft { - compact.
Proof

Let { / A} be a cover of by soft
open sets. Then = no Since (X, ,A) isa
soft compact, there exist a finite subset Ay of A such
that =, .Thus( — . )= {.So
isa{ - compact.
3.4 Theorem

Every soft { compact topological space

(X, ,A)issoft { - compact.
Proof

Let { / A} be a cover of by soft (
open sets. Then = .Since (X, ,{,A)isa

o
soft { compact, there exist a finite subset Ay of A

such that = Ao

compact.

Ti%)
So isad -

.Thus ( — )= C.

The converse of the above theorem is not true
as seen from the following example.

3.5 Example
Let X:{UL M2, |J3}' dq:{ab GZ}:
= { ) ) Kl| K2v K3| K4v K5| K6| K7v K8}
and (={p1, P2, P3, P4, Ps: P6: P7:Pg: Pas
Where Kl, K2, K3, K4, KS’ KG' K7, Kg, p]_, p2,
P3, P4, Ps, Ps: P7, Pg are soft subsets over , the
following

Ky = {{U1}| {Ul}}.
Ko={{b1, b2}, X},

Kz ={X {m}}

Ka = {{u23, {123},

Ks = {{u1, M2} (b1, 21},
Ke = {2, M3}, {2, ba}},
Ky = {{UL M3}, (M1, Us}},
Ks = {{us}, (b33},

p1 = {{us} {b1, w23}

P2 = {{ua} {u1}}

pP3s = {{Uz}’ {Uz}},

Ps = {{1, M2} {H1, M23},
Ps = {{M1}, {M2, p3}},

Pe = {{M1}, {M1, Ma}},

p7 = {{ul| UZ}I {IJ].}}!
ps={ {H1Hs}}

Po = {H1 K2}, }
Therefore X is soft ( -
{ compact.

compact, but not soft

3.6 Theorem
Soft { —
compact space in (X,
Proof
Let beasoftl —
/ A} be a cover of

closed subset of a soft { -
,{ ,A)issoft{ - compact.

closed set and let {
by soft { open sets. Then

ro - Since is a soft { — closed,
(w4 - Now { /o8y { -
:( A)} is a cover of by soft { open sets in
(X, ,A).Since (X, ,A) isasoft { - compact

space, there exist a finite subset Ay of A such that

AW ( —« D) C. Then -
o = L ( — «{ A C.So,
issoft { - compact.

3.7 Corollary

Soft { closed subset of soft { -
isasoft{ - compact space.
Proof

Following directly from the fact that, every (
closed setissoft { - closedsetin (X, ,C,A).

compact space

3.8 Theorem

If A issoft{ - compactsubset and G, is a
soft { - open set contained in 4, then ( 5 — Gp)
isasoft{ - compact.
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Proof
Let { / A} be acover of ( o—Gp) is
soft ( - open sets. Then ( A —Gp) o
since Gp A and Gp is soft { - open set, A
Ao Ga. Since 4 is soft { - compact, there
exist a finite subset Ay of A such that A —
[ & Gal ¢ .Thus[( A—Ga)— pe ]

( . Therefore ( 5o —Gp)isasoft{ - compact.
3.9 Corollary

If A issoft{ - compactsubset and G, is a

soft { - closed set of (X, ,{,A),( anGy)isa
soft { - compact.
Proof

Let A issoft{ - compact subset and G, is a

soft{ - closedsetof (X, ,{,A).Then ( —Gp)is
al - opensetof (X ,{,A).By using Theorem
37, anGA)=(C a—( —Gp) is a soft -
compact.

3.10 Theorem

If soft union of two soft { -
(X, ,C,A)issoft{ - compact.
Proof

Let A and G, be a soft { -

compact set in

compact sets and

let { / A} beacoverof , Gpbysoft( -
open sets. Then { / A} isacover of A and
Ga by soft { - open sets. Since 5 and G, are soft

( - compact, there exist a finite subset Ag and A; of
A such that

AT a ¢ and Gy — Ay .

Thus ( A — Ao ) (Ga- A ) C.

So A= 2 ( ao— p )

and

Ga = M (Ga— A

S0 A Ga = Ao (A= Ao )

AL (Ga— Ay ).

Hence, o Go= [ / Dy

and Al (A 2o ) (G- A )-

Which implies that, 5, Gx= [ / Dy

and Ml (a— Ao ) Ga— A )

Consequently, ( A

Ga)—{ I / Ay and A B=( a-
o ) Ga-— n, ) (- Therefore

Gaisa{ - compact.
3.11 Corollary

If finite soft union of soft { - compact sets

over Xisasoft{ - compact.
Proof
Let 1, 2, be a finite soft { - compact
sets over X. Assume { — A =123,... }be
a cover of by a soft { - open sets. Then
{ — A =123,... }isacoverof foreach
=123,... byasoft { - open sets. For each
=1,23,... , there exist a finite subset A of A

such that - { .So - -

A =
A { . Hence = A ( -
A ), for each =123, ... and thus

= =( = r ) = -

A ).Hence (- a )= =0 —

D L G B

4.SOFT CONNECETEDNESS IN SOFT GRILL
TOPOLOGICAL SPACES

In this section, we introduce soft ( -
separated and soft { - connectedness in soft grill
topological spaces and we workout some basic
theorem.

4.1 Definition
Any two soft non empty subsets and ofa
soft grill tological spaces (X, ,{,A) are said to be

soft { - separated,if n{ - c( )= =C-
cd( )n L If = such that and are
( - separated, it is said to be  and from a soft
( - separated of (X, ,C,A).
4.2 Definition

An soft grill topological space (X, ,{,A) is

cannot be written as the
separated sets.
connected if it is { -

called { - connected if
disjoint union of two non empty ( -
A soft subset of is ( -
connected as a subspace.

4.3 Example
Let X ={U1, W2, Mz}, A={01, Oz},
{ [ K1| KZY K3| K4| K5v K6| K7, K8}
and ZS ={ pll p21 p3l p4r p51 p6l p7r p8! p91 X}, where Kl ]
KZ' K3, K4' KS' KG' K7' K8' P1, P2,
P3, Pa, Ps, Ps, P7, Pg are soft subsets over X, the
following
Ky = {{U1}| {Uz}}n
K2={{U2: M3} {M1, Us}},
Kz = {2}, (b33}
Ky = {{Uz}l {Uz}},
Ks = {{1, M2}, {H1, W23}
Ke = {{li2, b}, (b2, Ms}},
Ky = {{UL M3}, {M1, Us}},
Ks = {{us} {bs}},
p1 = {{ba} {b1, M3}
P2 = {{ba} {}}
Pz = {{Uz}l {Hz}},
Ps = {{H1, M2} (b1, 123},
ps = {{u1}, {M2, b3},
Pe = {{H1} {b1 b33}
p7 = {{u1, M2} {uad}
pg = { X {u1. H3}},

Po = {M1, b2}, X}

Therefore X is soft{ - connected.
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4.4 Theorem
A soft grill topological space (X, ,{,A) is soft
( - connected if and only if cannot be express as
the disjoint union of two non empty soft { - open
sets.
Proof
Let beasoftl -
a two disjoint non empty soft  ( -

connected,and and Dbe
open subsets

of suchthat = .Then and are( -
closed in (X, ,C,A). Hence, nN¢- cl )= =
(- c( )n .Then isnotsoftl - connected.

Which is contradiction our hypothesis. This proves
that cannot be express as the union of two disjoint
non empty soft { - open subsets of . Conversely,
suppose that = , # # and nC-

cd( )= =C- c( )n .Thus and Dbea
two disjoint non empty soft { - open subsets of

,which is contradiction . Hence is soft ( -
connected.
4.5 Theorem
If issoft { - connected set in soft grill
topological space (X, ,{,A), then it is contained in
, where and are soft { - separated,
then either or
Proof
Now =(C n ) ( n ), where n
and N are soft { -  separated sets. So
either n # or n # and hence
or
4.6 Theorem

If a soft subset be a soft grill topological
spaces (X, ,{ ,A) is soft { - connected, then
there exist a soft { - connected set satisfying

- d( ).
Proof

Assume = , and are soft ( -
connected sets. Then and and
hence either C-c( ) T— ¢ ) (7

) or ( / ).Henceeither = or =

4.7 Theorem
If soft grill topological spaces (X,
following statement are equivalent:
1. is soft { - connected.
2. cannot be written as the union of two
disjoint non empty { - open sets.
3. contains no nonempty subset which is
both{ - openand{ - closed.

,C ,A), the

Proof
(1)—=(2): Assume be a soft { - connected
and if can be expressed as the union of two
disjoint nonempty sets  and are ( -
Consequently / .Nowd{ - c( )cU -
cd( / )= / .Hencel - cl( )n = .
Similarly we can prove n{ - cl( )= .Whichis
contradiction to that X is soft ( - connected.
Therefore, (X, ,{,A), cannot be written as the

open sets.

(2)—(3): Assume cannot be written as the

union of two disjoint non empty sets  and are
¢ - open sets. For (X, ,{,A) contains a
nonempty subset which is both { - open and ¢ -

closed. Now = . Therefore  and are
disjoint { - open whose union is . This is the
contradiction to our assumption. Hence, contains
no nonempty subset which is both { - openand { -

closed.

(3)—=(1): Assume contains no nonempty
subset which is both { - openand { - closed and

is { - disconnected. Now can be expressed as
the union of two disjoint nonempty sets and
suchthat[ n{- c( )] [C- c( )N ]= .
Since n =, =/ and = / .Since
(- cd( )n =,0- c( )c [/ .Therefore
(- c( )c ,which isal- closed.Similarly

isal - closed. Since = [/ |, isa C -
open. Hence, there exist a nonempty subsets is
both { - open and ( - closed. This is a
contradiction to our assumptions. Therefore, is( -

connected.

4.8 Theorem
If and are { - connected spaces of
X, ,C,A)and n # |, then is C -
connected spaces of (X, ,{,A).
Proof
Assume (X, ,{,A) be a soft grill topological
spaces and , < , and is { - connected
spaces. Now, if is { - disconnected spaces,
o) = - 0 n = and
., # ,Then C , C , c
or C . Similarly, leads to either C and
C  then c ,so = or <€ and
C then c ,so = or < .Now
c then N N ,SO N
= .Which is a contradiction, therefore is
{ - connected spaces of (X, ,C,A).
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