

RESEARCH ARTICLE

SOFT \mathcal{G} COMPACTNESS AND SOFT \mathcal{G} CONNECETEDNESS IN SOFT GRILL TOPOLOGICAL SPACESN. Chandramathi¹, P. Nithya^{2*} and V. Kiruthika³¹Assistant Professor, Department of mathematics, Government Arts College, Udumalpet, Tamilnadu, India. drmathimaths@gmail.com²Research scholar, Department of mathematics, Government Arts College, Udumalpet, Tamilnadu, India. nithyapalanisamy2599@gmail.com³Research scholar, Department of mathematics, Government Arts College, Udumalpet, Tamilnadu, India. kiruthi.v3@gmail.com**Abstract**

This paper aims to investigate the concepts of connectedness and compactness to soft grill topological space $(X, \tau_{\mathcal{S}}, \zeta_{\mathcal{S}}, A)$. The concepts of $\zeta_{\mathcal{S}} - \mathcal{G}$ connected sets, $\zeta_{\mathcal{S}} - \mathcal{G}$ separated sets, and $\zeta_{\mathcal{S}} - \mathcal{G}$ compactness are introduced in soft topological spaces with soft grill. Furthermore, we use $\zeta_{\mathcal{S}} - \mathcal{G}$ closed sets to refine existing theorems, and we illustrate the remarks with a variety of cases.

Keywords

Soft sets, soft connected, soft $\zeta_{\mathcal{S}}$ connected, soft $\zeta_{\mathcal{S}} - \mathcal{G}$ connected set, soft $\zeta_{\mathcal{S}} - \mathcal{G}$ separated, soft $\zeta_{\mathcal{S}} - \mathcal{G}$ compactness.

1. Introduction

Soft grill topological spaces were first formulated by Rodyna. A et-al[7,8]. Subsequently, the idea of soft generalized closed sets in the setting of soft grill topological spaces was explored in [1]. In this paper, we aim to introduce the concept of soft $\zeta_{\mathcal{S}} - \mathcal{G}$ connectedness and soft $\zeta_{\mathcal{S}} - \mathcal{G}$ compactness has been investigated its essential characteristics in depth.

2. Preliminaries**2.1 Definition[8]**

A non empty collection $\mathcal{G} \subseteq SS(X, A)$ of soft sets over X is called a soft grill, if the following conditions hold:

- (i) If $\mathcal{F}_A \in \mathcal{G}$ and $\mathcal{F}_A \subseteq \mathcal{H}_A$, which implies $\mathcal{H}_B \in \mathcal{G}$.
- (ii) If $\mathcal{F}_A \subseteq \mathcal{H}_A \in \mathcal{G}$, which implies $\mathcal{F}_A \in \mathcal{G}$ or $\mathcal{H}_A \in \mathcal{G}$.

The quadruplet $(X, \tau, A, \mathcal{G})$ is said to be soft grill topological space.

2.2 Definition[1]

Let $\zeta_{\mathcal{S}}$ be a soft grill over a soft topological space $(X, \tau_{\mathcal{S}}, A)$. A soft set \mathcal{F}_B is called $\zeta_{\mathcal{S}}$ generalized closed set (briefly $\zeta_{\mathcal{S}} - \mathcal{G}$ closed set), if $\chi_{\zeta}(\mathcal{F}_B) \subseteq \mathcal{U}_A$, whenever $\mathcal{F}_B \subseteq \mathcal{U}_A$ and \mathcal{U}_A is soft open in $(X, \tau_{\mathcal{S}}, A)$. The complement of such set will be called $\zeta_{\mathcal{S}} - \mathcal{G}$ open set (resp. $\zeta_{\mathcal{S}} - \mathcal{G}$ open set).

2.3 Definition[10]

A bijection $f : (X, \tau, E) \rightarrow (Y, \sigma, K)$ is called Soft homeomorphism if f is both Soft continuous and Soft open map.

2.4 Definition[9]

A soft topological space $(X, \tau_{\mathcal{S}}, A)$ is soft compact if each cover of X by a soft open sets has a finite subcover.

2.5 Definition[9]

Let \mathcal{G} be a soft grill topological space (X, τ, E) . A soft set F is called soft \mathcal{G} compact if for every cover $\{U_i \in \tau / i \in \Gamma\}$ of F by a soft open sets, there exists a finite subset Γ_0 of Γ such that $(\tilde{X} - \bigcup_{i \in \Gamma_0} U_i) \notin \zeta_{\mathcal{S}}$.

2.6 Definition[6]

A non empty soft subsets (F, E) , (G, E) of a soft topological spaces $(X, \tau_{\mathcal{S}}, A)$ are said to be soft separated sets if $cl(F, E) \cap (G, E) = (F, E) \cap cl(G, E) = \emptyset$.

2.7 Definition[6]

A soft topological space $(X, \tau_{\mathcal{S}}, A)$ is said to be soft connected if \tilde{X} cannot be expressed as the soft union of two soft separated sets (F, A) , (G, A) in $(X, \tau_{\mathcal{S}}, A)$. Otherwise, $(X, \tau_{\mathcal{S}}, A)$ is said to be soft disconnected

3. Soft \mathcal{G} COMPACTNESS SOFT GRILL TOPOLOGICAL SPACES

In this section, we define a novel category of soft generalized compactness within the framework of soft grills as follows:

3.1 Definition

An soft grill topological space (X, τ_s, ζ_s, A) is called ζ_s - \mathcal{G} compact if every ζ_s - \mathcal{G} open cover $\{U_i \in \tau_s / i \in \Delta\}$ of (X, τ_s, ζ_s, A) , there exists a finite subset Δ_0 of Δ such that $(\tilde{X} - \bigsqcup_{i \in \Delta_0} U_i) \notin \zeta_s$.

3.2 Example

Let $X = \{\mu_1, \mu_2, \mu_3\}$ and $\mathcal{A} = \{\alpha_1, \alpha_2\}$,

$\tau_s = \{\emptyset, \tilde{X}, K_1, K_2, K_3, K_4, K_5, K_6, K_7, K_8, K_9, K_{10}, K_{11}, K_{12}\}$, and

$\zeta_s = \{\rho_1, \rho_2, \rho_3, \rho_4, \rho_5, \rho_6, \rho_7, \rho_8, \tilde{X}\}$, where $K_1, K_2, K_3, K_4, K_5, K_6, K_7, K_8, K_9, K_{10}, K_{11}, K_{12}, \rho_1, \rho_2, \rho_3, \rho_4, \rho_5, \rho_6, \rho_7, \rho_8$ are soft subsets over $X_{\mathcal{A}}$, we get the following

$K_1 = \{\{\mu_1\}, \{\mu_1\}\}$,

$K_2 = \{\{\mu_2\}, \{\mu_2\}\}$,

$K_3 = \{\{\mu_1, \mu_2\}, \{\mu_1, \mu_2\}\}$,

$K_4 = \{\{\mu_2, \mu_3\}, \{\mu_2, \mu_3\}\}$,

$K_5 = \{\{\mu_1, \mu_3\}, \{\mu_1, \mu_3\}\}$,

$K_6 = \{\{\mu_3\}, \{\mu_3\}\}$,

$K_7 = \{\{\mu_1\}, \{\mu_2\}\}$,

$K_8 = \{\{\mu_1, \mu_2\}, \{\mu_2\}\}$,

$K_9 = \{\{\mu_1\}, \{\mu_3\}\}$,

$K_{10} = \{\{\mu_1, \mu_2\}, \{\mu_1, \mu_3\}\}$,

$K_{11} = \{\{\mu_1, \mu_3\}, \{\mu_1, \mu_2\}\}$,

$K_{12} = \{\{\mu_2\}, \{\mu_1, \mu_3\}\}$,

$\rho_1 = \{\{\mu_1, \mu_2\}, \{\mu_1, \mu_3\}\}$,

$\rho_2 = \{\{\mu_1\}, \{\mu_1\}\}$,

$\rho_3 = \{\{\mu_2\}, \{\mu_2\}\}$,

$\rho_4 = \{\{\mu_1, \mu_2\}, \{\mu_1, \mu_2\}\}$,

$\rho_5 = \{\{\mu_1\}, \{\mu_2, \mu_3\}\}$,

$\rho_6 = \{\{\mu_1\}, \{\mu_1, \mu_3\}\}$,

$\rho_7 = \{\{\mu_1, \mu_2\}, \{\mu_1\}\}$,

$\rho_8 = \{\tilde{X}, \{\mu_1, \mu_3\}\}$,

$\zeta_s - \mathcal{G}C(X) = \{\emptyset, \tilde{X}, \rho_1, \rho_2, \rho_3, \rho_4\}$,

$\zeta_s - \mathcal{G}O(X) = \zeta_s - \mathcal{G}C(X)^c$.

So (X, τ_s, ζ_s, A) is a soft ζ_s - \mathcal{G} compact.

3.3 Theorem

Every soft compact topological space (X, τ_s, A) is soft ζ_s - \mathcal{G} compact.

Proof

Let $\{U_i \in \tau_s / i \in \Delta\}$ be a cover of \tilde{X} by soft τ open sets. Then $\tilde{X} = \bigsqcup_{i \in \Delta_0} U_i$. Since (X, τ_s, A) is a soft compact, there exist a finite subset Δ_0 of Δ such that $\tilde{X} = \bigsqcup_{i \in \Delta_0} U_i$. Thus $(\tilde{X} - \bigsqcup_{i \in \Delta_0} U_i) = \emptyset \notin \zeta_s$. So \tilde{X} is a ζ_s - \mathcal{G} compact.

3.4 Theorem

Every soft ζ_s compact topological space (X, τ_s, A) is soft ζ_s - \mathcal{G} compact.

Proof

Let $\{U_i \in \tau_s / i \in \Delta\}$ be a cover of \tilde{X} by soft ζ_s open sets. Then $\tilde{X} = \bigsqcup_{i \in \Delta_0} U_i$. Since (X, τ_s, ζ_s, A) is a soft ζ_s compact, there exist a finite subset Δ_0 of Δ such that $\tilde{X} = \bigsqcup_{i \in \Delta_0} U_i$. Thus $(\tilde{X} - \bigsqcup_{i \in \Delta_0} U_i) = \emptyset \notin \zeta_s$. So \tilde{X} is a ζ_s - \mathcal{G} compact.

The converse of the above theorem is not true as seen from the following example.

3.5 Example

Let $X = \{\mu_1, \mu_2, \mu_3\}$, $\mathcal{A} = \{\alpha_1, \alpha_2\}$,

$\tau_s = \{\emptyset, \tilde{X}, K_1, K_2, K_3, K_4, K_5, K_6, K_7, K_8\}$

and $\zeta_s = \{\rho_1, \rho_2, \rho_3, \rho_4, \rho_5, \rho_6, \rho_7, \rho_8, \rho_9, \tilde{X}\}$,

where $K_1, K_2, K_3, K_4, K_5, K_6, K_7, K_8, \rho_1, \rho_2$,

$\rho_3, \rho_4, \rho_5, \rho_6, \rho_7, \rho_8$ are soft subsets over X , the following

$K_1 = \{\{\mu_1\}, \{\mu_1\}\}$,

$K_2 = \{\{\mu_1, \mu_2\}, X\}$,

$K_3 = \{X, \{\mu_1\}\}$,

$K_4 = \{\{\mu_2\}, \{\mu_2\}\}$,

$K_5 = \{\{\mu_1, \mu_2\}, \{\mu_1, \mu_2\}\}$,

$K_6 = \{\{\mu_2, \mu_3\}, \{\mu_2, \mu_3\}\}$,

$K_7 = \{\{\mu_1, \mu_3\}, \{\mu_1, \mu_3\}\}$,

$K_8 = \{\{\mu_3\}, \{\mu_3\}\}$,

$\rho_1 = \{\{\mu_1\}, \{\mu_1, \mu_2\}\}$,

$\rho_2 = \{\{\mu_1\}, \{\mu_1\}\}$,

$\rho_3 = \{\{\mu_2\}, \{\mu_2\}\}$,

$\rho_4 = \{\{\mu_1, \mu_2\}, \{\mu_1, \mu_2\}\}$,

$\rho_5 = \{\{\mu_1\}, \{\mu_2, \mu_3\}\}$,

$\rho_6 = \{\{\mu_1\}, \{\mu_1, \mu_3\}\}$,

$\rho_7 = \{\{\mu_1, \mu_2\}, \{\mu_1\}\}$,

$\rho_8 = \{\tilde{X}, \{\mu_1, \mu_3\}\}$,

$\rho_9 = \{\mu_1, \mu_2\}, \tilde{X}\}$.

Therefore X is soft ζ_s - \mathcal{G} compact, but not soft ζ_s compact.

3.6 Theorem

Soft ζ_s - \mathcal{G} closed subset of a soft ζ_s - \mathcal{G} compact space in (X, τ_s, ζ_s, A) is soft ζ_s - \mathcal{G} compact.

Proof

Let F_A be a soft ζ_s - \mathcal{G} closed set and let $\{U_i \in \tau_s / i \in \Delta\}$ be a cover of F_A by soft ζ_s open sets. Then $F_A \subseteq \bigsqcup_{i \in \Delta_0} U_i$. Since F_A is a soft ζ_s - \mathcal{G} closed, $\chi_{\zeta_s}(F_A) \subseteq \bigsqcup_{i \in \Delta_0} U_i$. Now $\{U_i \in \tau_s / i \in \Delta\} \cup \{\tilde{X} - \chi_{\zeta_s}(F_A)\}$ is a cover of \tilde{X} by soft ζ_s open sets in (X, τ_s, A) . Since (X, τ_s, A) is a soft ζ_s - \mathcal{G} compact space, there exist a finite subset Δ_0 of Δ such that $\tilde{X} - [\bigsqcup_{i \in \Delta_0} U_i \cup (\tilde{X} - \chi_{\zeta_s}(F_A))] \notin \zeta_s$. Then $F_A - \bigsqcup_{i \in \Delta_0} U_i = \tilde{X} - [\bigsqcup_{i \in \Delta_0} U_i \cup (\tilde{X} - \chi_{\zeta_s}(F_A))] \notin \zeta_s$. So, F_A is soft ζ_s - \mathcal{G} compact.

3.7 Corollary

Soft ζ_s closed subset of soft ζ_s - \mathcal{G} compact space is a soft ζ_s - \mathcal{G} compact space.

Proof

Following directly from the fact that, every ζ_s closed set is soft ζ_s - \mathcal{G} closed set in (X, τ_s, ζ_s, A) .

3.8 Theorem

If \mathcal{F}_A is soft ζ_s - \mathcal{G} compact subset and G_A is a soft ζ_s - \mathcal{G} open set contained in \mathcal{F}_A , then $(\mathcal{F}_A - G_A)$ is a soft ζ_s - \mathcal{G} compact.

Proof

Let $\{U_i \in \tau_s / i \in \Delta\}$ be a cover of $(\mathcal{F}_A - G_A)$ is soft ζ_s - \mathcal{G} open sets. Then $(\mathcal{F}_A - G_A) \subseteq \bigcup_{i \in \Delta_0} U_i$, since $G_A \subseteq \mathcal{F}_A$ and G_A is soft ζ_s - \mathcal{G} open set, $\mathcal{F}_A \subseteq \bigcup_{i \in \Delta_0} U_i \cup G_A$. Since \mathcal{F}_A is soft ζ_s - \mathcal{G} compact, there exist a finite subset Δ_0 of Δ such that $\mathcal{F}_A - [\bigcup_{i \in \Delta_0} U_i \cup G_A] \notin \zeta_s$. Thus $[(\mathcal{F}_A - G_A) - \bigcup_{i \in \Delta_0} U_i] \notin \zeta_s$. Therefore $(\mathcal{F}_A - G_A)$ is a soft ζ_s - \mathcal{G} compact.

3.9 Corollary

If \mathcal{F}_A is soft ζ_s - \mathcal{G} compact subset and G_A is a soft ζ_s - \mathcal{G} closed set of (X, τ_s, ζ_s, A) , $(\mathcal{F}_A \cap G_A)$ is a soft ζ_s - \mathcal{G} compact.

Proof

Let \mathcal{F}_A is soft ζ_s - \mathcal{G} compact subset and G_A is a soft ζ_s - \mathcal{G} closed set of (X, τ_s, ζ_s, A) . Then $(\bar{X} - G_A)$ is a ζ_s - \mathcal{G} open set of (X, τ_s, ζ_s, A) . By using Theorem 3.7, $(\mathcal{F}_A \cap G_A) = (\mathcal{F}_A - (\bar{X} - G_A))$ is a soft ζ_s - \mathcal{G} compact.

3.10 Theorem

If soft union of two soft ζ_s - \mathcal{G} compact set in (X, τ_s, ζ_s, A) is soft ζ_s - \mathcal{G} compact.

Proof

Let \mathcal{F}_A and G_A be a soft ζ_s - \mathcal{G} compact sets and let $\{U_i \in \tau_s / i \in \Delta\}$ be a cover of $\mathcal{F}_A \cup G_A$ by soft ζ_s - \mathcal{G} open sets. Then $\{U_i \in \tau_s / i \in \Delta\}$ is a cover of \mathcal{F}_A and G_A by soft ζ_s - \mathcal{G} open sets. Since \mathcal{F}_A and G_A are soft ζ_s - \mathcal{G} compact, there exist a finite subset Δ_0 and Δ_1 of Δ such that

$$\mathcal{F}_A - \bigcup_{ij \in \Delta_0} U_{ij} \notin \zeta_s \text{ and } G_A - \bigcup_{ik \in \Delta_1} U_{ik} \notin \zeta_s.$$

$$\text{Thus } (\mathcal{F}_A - \bigcup_{ij \in \Delta_0} U_{ij}) \cup (G_A - \bigcup_{ik \in \Delta_1} U_{ik}) \notin \zeta_s.$$

$$\text{So } \mathcal{F}_A = \bigcup_{ij \in \Delta_0} U_{ij} \cup (\mathcal{F}_A - \bigcup_{ij \in \Delta_0} U_{ij})$$

and

$$G_A = \bigcup_{ik \in \Delta_1} U_{ik} \cup (G_A - \bigcup_{ik \in \Delta_1} U_{ik}).$$

$$\text{So } \mathcal{F}_A \cup G_A = \bigcup_{ij \in \Delta_0} U_{ij} \cup (\mathcal{F}_A - \bigcup_{ij \in \Delta_0} U_{ij}) \cup \bigcup_{ik \in \Delta_1} U_{ik} \cup (G_A - \bigcup_{ik \in \Delta_1} U_{ik}).$$

$$\text{Hence, } \mathcal{F}_A \cup G_A = \bigcup [U_{ij} \cup U_{ik} / ij \in \Delta_0$$

$$\text{and } ik \in \Delta_1] \cup (\mathcal{F}_A - \bigcup_{ij \in \Delta_0} U_{ij}) \cup (G_A - \bigcup_{ik \in \Delta_1} U_{ik}).$$

Which implies that, $\mathcal{F}_A \cup G_A = \bigcup [U_{ij} \cup U_{ik} / ij \in \Delta_0$

$$\text{and } ik \in \Delta_1] \cup (\mathcal{F}_A - \bigcup_{ij \in \Delta_0} U_{ij}) \cup (G_A - \bigcup_{ik \in \Delta_1} U_{ik}).$$

Consequently, $(\mathcal{F}_A \cup G_A) - \{ \bigcup [U_{ij} \cup U_{ik} / ij \in \Delta_0 \text{ and } ik \in \Delta_1] \} = (\mathcal{F}_A - \bigcup_{ij \in \Delta_0} U_{ij}) \cup (G_A - \bigcup_{ik \in \Delta_1} U_{ik}) \notin \zeta_s$. Therefore $\mathcal{F}_A \cup G_A$ is a ζ_s - \mathcal{G} compact.

3.11 Corollary

If finite soft union of soft ζ_s - \mathcal{G} compact sets over X is a soft ζ_s - \mathcal{G} compact.

Proof

Let $\delta_1, \delta_2, \dots, \delta_n$ be a finite soft ζ_s - \mathcal{G} compact sets over X . Assume $\{U_{\beta i} \in \frac{\tau}{\beta i} / \beta = 1, 2, 3, \dots, n\}$ be a cover of $\bigcup_{\beta=1}^n \delta_\beta$ by a soft ζ_s - \mathcal{G} open sets. Then $\{U_{\beta i} \in \frac{\tau}{\beta i} / \beta = 1, 2, 3, \dots, n\}$ is a cover of δ_β for each $\beta = 1, 2, 3, \dots, n$ by a soft ζ_s - \mathcal{G} open sets. For each $\beta = 1, 2, 3, \dots, n$, there exist a finite subset Δ_β of Δ

such that $\delta_\beta - \bigcup_{\beta i \in \Delta_\beta} U_{\beta i} \notin \zeta_s$. So $\bigcup_{\beta=1}^n \delta_\beta - \bigcup_{\beta i \in \Delta_\beta} U_{\beta i} \notin \zeta_s$. Hence $\delta_\beta = \bigcup_{\beta i \in \Delta_\beta} U_{\beta i} \cup (\delta_\beta - \bigcup_{\beta i \in \Delta_\beta} U_{\beta i})$, for each $\beta = 1, 2, 3, \dots, n$ and thus $\bigcup_{\beta=1}^n \delta_\beta = (\bigcup_{\beta=1}^n \bigcup_{\beta i \in \Delta_\beta} U_{\beta i}) \cup (\bigcup_{\beta=1}^n (\delta_\beta - \bigcup_{\beta i \in \Delta_\beta} U_{\beta i}))$. Hence $(\bigcup_{\beta=1}^n \bigcup_{\beta i \in \Delta_\beta} U_{\beta i}) = \bigcup_{\beta=1}^n (\delta_\beta - \bigcup_{\beta i \in \Delta_\beta} U_{\beta i}) - (\bigcup_{\beta=1}^n (\delta_\beta - \bigcup_{\beta i \in \Delta_\beta} U_{\beta i})) \notin \zeta_s$.

4. SOFT \mathcal{G} CONNECETEDNESS IN SOFT GRILL TOPOLOGICAL SPACES

In this section, we introduce soft ζ_s - \mathcal{G} separated and soft ζ_s - \mathcal{G} connectedness in soft grill topological spaces and we workout some basic theorem.

4.1 Definition

Any two soft non empty subsets S_A and T_A of a soft grill topological spaces (X, τ_s, ζ_s, A) are said to be soft ζ_s - \mathcal{G} separated, if $S_A \cap \zeta_s$ - \mathcal{G} cl(T_A) = \emptyset = ζ_s - \mathcal{G} cl(S_A) $\cap T_A$. If $\bar{X} = S_A \cup T_A$ such that S_A and T_A are ζ_s - \mathcal{G} separated, it is said to be S_A and T_A from a soft ζ_s - \mathcal{G} separated of (X, τ_s, ζ_s, A) .

4.2 Definition

An soft grill topological space (X, τ_s, ζ_s, A) is called ζ_s - \mathcal{G} connected if \bar{X} cannot be written as the disjoint union of two non empty ζ_s - \mathcal{G} separated sets. A soft subset of \bar{X} is ζ_s - \mathcal{G} connected if it is ζ_s - \mathcal{G} connected as a subspace.

4.3 Example

Let $X = \{\mu_1, \mu_2, \mu_3\}$, $\mathcal{A} = \{\alpha_1, \alpha_2\}$, $\tau_s = \{\emptyset, \bar{X}, K_1, K_2, K_3, K_4, K_5, K_6, K_7, K_8\}$ and $\zeta_s = \{\rho_1, \rho_2, \rho_3, \rho_4, \rho_5, \rho_6, \rho_7, \rho_8, \rho_9, \bar{X}\}$, where $K_1, K_2, K_3, K_4, K_5, K_6, K_7, K_8, \rho_1, \rho_2, \rho_3, \rho_4, \rho_5, \rho_6, \rho_7, \rho_8$ are soft subsets over X , the following

$$\begin{aligned} K_1 &= \{\{\mu_1\}, \{\mu_2\}\}, \\ K_2 &= \{\{\mu_2, \mu_3\}, \{\mu_1, \mu_3\}\}, \\ K_3 &= \{\{\mu_2\}, \{\mu_3\}\}, \\ K_4 &= \{\{\mu_2\}, \{\mu_2\}\}, \\ K_5 &= \{\{\mu_1, \mu_2\}, \{\mu_1, \mu_2\}\}, \\ K_6 &= \{\{\mu_2, \mu_3\}, \{\mu_2, \mu_3\}\}, \\ K_7 &= \{\{\mu_1, \mu_3\}, \{\mu_1, \mu_3\}\}, \\ K_8 &= \{\{\mu_3\}, \{\mu_3\}\}, \\ \rho_1 &= \{\{\mu_1\}, \{\mu_1, \mu_2\}\}, \\ \rho_2 &= \{\{\mu_1\}, \{\mu_1\}\}, \\ \rho_3 &= \{\{\mu_2\}, \{\mu_2\}\}, \\ \rho_4 &= \{\{\mu_1, \mu_2\}, \{\mu_1, \mu_2\}\}, \\ \rho_5 &= \{\{\mu_1\}, \{\mu_2, \mu_3\}\}, \\ \rho_6 &= \{\{\mu_1\}, \{\mu_1, \mu_3\}\}, \\ \rho_7 &= \{\{\mu_1, \mu_2\}, \{\mu_1\}\}, \\ \rho_8 &= \{\bar{X}, \{\mu_1, \mu_3\}\}, \\ \rho_9 &= \{\mu_1, \mu_2\}, \bar{X}\}. \end{aligned}$$

Therefore X is soft ζ_s - \mathcal{G} connected.

4.4 Theorem

A soft grill topological space (X, τ_S, ζ_S, A) is soft ζ_S - \mathcal{G} connected if and only if \tilde{X} cannot be expressed as the disjoint union of two non empty soft ζ_S - \mathcal{G} open sets.

Proof

Let \tilde{X} be a soft ζ_S - \mathcal{G} connected, and S_A and T_A be a two disjoint non empty soft ζ_S - \mathcal{G} open subsets of \tilde{X} such that $\tilde{X} = S_A \cup T_A$. Then S_A and T_A are ζ_S - \mathcal{G} closed in (X, τ_S, ζ_S, A) . Hence, $S_A \cap \zeta_S$ - \mathcal{G} cl(T_A) = \emptyset = ζ_S - \mathcal{G} cl(S_A) $\cap T_A$. Then \tilde{X} is not soft ζ_S - \mathcal{G} connected. Which is contradiction our hypothesis. This proves that \tilde{X} cannot be express as the union of two disjoint non empty soft ζ_S - \mathcal{G} open subsets of \tilde{X} . Conversely, suppose that $\tilde{X} = S_A \cup T_A$, $S_A \neq \emptyset \neq T_A$ and $S_A \cap \zeta_S$ - \mathcal{G} cl(T_A) = \emptyset = ζ_S - \mathcal{G} cl(S_A) $\cap T_A$. Thus S_A and T_A be a two disjoint non empty soft ζ_S - \mathcal{G} open subsets of \tilde{X} , which is contradiction . Hence \tilde{X} is soft ζ_S - \mathcal{G} connected.

4.5 Theorem

If F_A is soft ζ_S - \mathcal{G} connected set in soft grill topological space (X, τ_S, ζ_S, A) , then it is contained in $S_A \cup T_A$, where S_A and T_A are soft ζ_S - \mathcal{G} separated, then either $F_A \subset S_A$ or $F_A \subset T_A$.

Proof

Now $F_A = (F_A \cap S_A) \cup (F_A \cap T_A)$, where $F_A \cap S_A$ and $F_A \cap T_A$ are soft ζ_S - \mathcal{G} separated sets. So either $F_A \cap S_A \neq \emptyset$ or $F_A \cap T_A \neq \emptyset$ and hence $F_A \subset S_A$ or $F_A \subset T_A$.

4.6 Theorem

If a soft subset S_A be a soft grill topological spaces (X, τ_S, ζ_S, A) is soft ζ_S - \mathcal{G} connected, then there exist a soft ζ_S - \mathcal{G} connected set Q_A satisfying $Q_A \subset S_A \subset \zeta_S$ - \mathcal{G} cl(Q_A).

Proof

Assume $S_A = E_A \cup F_A$, E_A and F_A are soft ζ_S - \mathcal{G} connected sets. Then $Q_A \subset E_A$ and $Q_A \subset F_A$ and hence either $S_A \subset \zeta_S$ - \mathcal{G} cl(Q_A) $\subset \zeta_S$ - \mathcal{G} cl(E_A) $\subset (\tilde{X}/F_A)$ or $S_A \subset (\tilde{X}/F_A)$. Hence either $E_A = \emptyset$ or $F_A = \emptyset$.

4.7 Theorem

If soft grill topological spaces (X, τ_S, ζ_S, A) , the following statement are equivalent:

1. \tilde{X} is soft ζ_S - \mathcal{G} connected.
2. \tilde{X} cannot be written as the union of two disjoint non empty ζ_S - \mathcal{G} open sets.
3. \tilde{X} contains no nonempty subset which is both ζ_S - \mathcal{G} open and ζ_S - \mathcal{G} closed.

Proof

(1) \rightarrow (2): Assume \tilde{X} be a soft ζ_S - \mathcal{G} connected and if \tilde{X} can be expressed as the union of two disjoint nonempty sets S_A and T_A are ζ_S - \mathcal{G} open sets. Consequently $S_A \subset \tilde{X}/T_A$. Now ζ_S - \mathcal{G} cl(S_A) $\subset \zeta_S$ - \mathcal{G} cl(\tilde{X}/T_A) = \tilde{X}/T_A . Hence ζ_S - \mathcal{G} cl(S_A) $\cap T_A = \emptyset$. Similarly we can prove $S_A \cap \zeta_S$ - \mathcal{G} cl(T_A) = \emptyset . Which is contradiction to that X is soft ζ_S - \mathcal{G} connected. Therefore, (X, τ_S, ζ_S, A) , cannot be written as the union of two disjoint non empty ζ_S - \mathcal{G} open sets.

(2) \rightarrow (3): Assume \tilde{X} cannot be written as the union of two disjoint non empty sets S_A and T_A are ζ_S - \mathcal{G} open sets. For (X, τ_S, ζ_S, A) contains a nonempty subset which is both ζ_S - \mathcal{G} open and ζ_S - \mathcal{G} closed. Now $\tilde{X} = S_A \cup S_A^c$. Therefore S_A and S_A^c are disjoint ζ_S - \mathcal{G} open whose union is \tilde{X} . This is the contradiction to our assumption. Hence, \tilde{X} contains no nonempty subset which is both ζ_S - \mathcal{G} open and ζ_S - \mathcal{G} closed.

(3) \rightarrow (1): Assume \tilde{X} contains no nonempty subset which is both ζ_S - \mathcal{G} open and ζ_S - \mathcal{G} closed and \tilde{X} is ζ_S - \mathcal{G} disconnected. Now \tilde{X} can be expressed as the union of two disjoint nonempty sets S_A and T_A such that $[S_A \cap \zeta_S$ - \mathcal{G} cl(T_A)] \cup [ζ_S - \mathcal{G} cl(S_A) $\cap T_A$] = \emptyset . Since $S_A \cap T_A = \emptyset$, $S_A = \tilde{X}/T_A$ and $T_A = \tilde{X}/S_A$. Since ζ_S - \mathcal{G} cl(S_A) $\cap T_A = \emptyset$, ζ_S - \mathcal{G} cl(S_A) $\subset \tilde{X}/T_A$. Therefore ζ_S - \mathcal{G} cl(S_A) $\subset S_A$, which S_A is a ζ_S - \mathcal{G} closed. Similarly T_A is a ζ_S - \mathcal{G} closed. Since $S_A = \tilde{X}/T_A$, S_A is a ζ_S - \mathcal{G} open. Hence, there exist a nonempty subsets S_A is both ζ_S - \mathcal{G} open and ζ_S - \mathcal{G} closed. This is a contradiction to our assumptions. Therefore, \tilde{X} is ζ_S - \mathcal{G} connected.

4.8 Theorem

If S_A and T_A are ζ_S - \mathcal{G} connected spaces of (X, τ_S, ζ_S, A) and $S_A \cap T_A \neq \emptyset$, then $S_A \cup T_A$ is ζ_S - \mathcal{G} connected spaces of (X, τ_S, ζ_S, A) .

Proof

Assume (X, τ_S, ζ_S, A) be a soft grill topological spaces and $S_A, T_A \subseteq \tilde{X}$, S_A and T_A are ζ_S - \mathcal{G} connected spaces. Now, if $S_A \cup T_A$ is ζ_S - \mathcal{G} disconnected spaces, so $S_A \cup T_A = P_A \cup Q_A \in \zeta_S$ - \mathcal{G} O, $P_A \cap Q_A = \tilde{X}$ and $P_A, Q_A \neq \emptyset$, Then $S_A \subseteq S_A \cup T_A$, $S_A \subseteq P_A \cup Q_A$, $S_A \subseteq P_A$ or $S_A \subseteq Q_A$. Similarly, T_A leads to either $S_A \subseteq P_A$ and $T_A \subseteq P_A$ then $S_A \cup T_A \subseteq P_A$, so $Q_A = \emptyset$ or $S_A \subseteq Q_A$ and $T_A \subseteq Q_A$ then $S_A \cup T_A \subseteq T_A$, so $P_A = \emptyset$ or $T_A \subseteq Q_A$. Now $T_A \subseteq Q_A$ then $S_A \cap T_A \subseteq P_A \cap Q_A$, so $S_A \cap T_A = \emptyset$.Which is a contradiction, therefore $S_A \cup T_A$ is ζ_S - \mathcal{G} connected spaces of (X, τ_S, ζ_S, A) .

References

1. Chandramathi.N and Nithya. P (2024), Soft generalized closed sets in soft grill topological spaces, Indian Journal of Natural Sciences, Vol. 15/issue 87, ISSN 0976-0997,86539-86543.
2. D. Molodtsov (1999), Soft Set Theory-First Results, Comp. Math. Appl. 37,19-31.
3. H. I. Mustafa and F. M. Sleim (2014), Soft, Generalized Closed Sets with Respect to an Ideal in Soft Topological Spaces. Appl. Math. Inf. Sci. 8, No. 2, 665-671.
4. F.Lin, (2013) soft connected spaces and soft paracompact spaces, International journal of Mathematics Science and Engineering, 7(2) 1-7.
5. Kannan .K, Soft generalized closed sets in Soft Topological Spaces, Journal of theoretical and Applied Information Technology.

6. N. Chandramathi(2016): A New class of generalized closed sets using grills, Int. J. Math. Archive, 7(7), 66–71.
7. Rodynna A.Hosny and A.M.Abd El-Latif, Soft \mathcal{G} compactness in soft topological spaces, Annals of Fuzzy Mathematics and Informatics Volume x, ISSN: 2287-6235.
8. Rodynna A.Hosny, Notes on soft perfect sets, International Journal of Math. Analysis, 8(17)(2014) 803-812.
9. Rodynna A.Hosny and A.M.Abd El-Latif, Soft \mathcal{G} compactness in soft topological spaces, Annals of Fuzzy Mathematics and Informatics Volume x, ISSN: 2287-6235.
10. M. Shabir, M. Naz, On Soft Topological Spaces, Computer and Mathematics with Applications, 61(7)(2011), ISSN: 1786-1799.